Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

HIV-1 and influenza antibodies: seeing antigens in new ways

Abstract

New modes of humoral recognition have been identified by studies of antibodies that neutralize human immunodeficiency virus type 1 and influenza A viruses. Understanding how such modes of antibody-antigen recognition can occur in the context of sophisticated mechanisms of humoral evasion has implications for the development of effective vaccines. Here we describe eight modes of antibody recognition first observed with human immunodeficiency virus type 1. Similarities to four of these modes have been identified with antibodies to a conserved 'stem' epitope on influenza A viruses. We outline how each of these different modes of antibody recognition is particularly suited to overcoming a specific viral evasion tactic and assess potential routes of re-elicitation in vaccine settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: New modes of antibody recognition demonstrated by HIV-1-reactive antibodies.
Figure 2: Features of HIV-1 antibody recognition used by influenza hemagglutinin-reactive antibodies.
Figure 3: Antibody-directed strategies of vaccine design.

Similar content being viewed by others

References

  1. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Richman, D.D., Wrin, T., Little, S.J. & Petropoulos, C.J. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc. Natl. Acad. Sci. USA 100, 4144–4149 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Weiss, R.A. et al. Neutralization of human T-lymphotropic virus type III by sera of AIDS and AIDS-risk patients. Nature 316, 69–72 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Li, Y. et al. Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat. Med. 13, 1032–1034 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Dhillon, A.K. et al. Dissecting the neutralizing antibody specificities of broadly neutralizing sera from human immunodeficiency virus type 1-infected donors. J. Virol. 81, 6548–6562 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Doria-Rose, N.A. et al. Frequency and phenotype of human immunodeficiency virus envelope-specific B cells from patients with broadly cross-neutralizing antibodies. J. Virol. 83, 188–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Sather, D.N. et al. Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J. Virol. 83, 757–769 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Binley, J.M. et al. Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J. Virol. 78, 13232–13252 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Wyatt, R. et al. The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 393, 705–711 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Starcich, B.R. et al. Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell 45, 637–648 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Kwong, P.D. et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420, 678–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Labrijn, A.F. et al. Access of antibody molecules to the conserved coreceptor binding site on glycoprotein gp120 is sterically restricted on primary human immunodeficiency virus type 1. J. Virol. 77, 10557–10565 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Calarese, D.A. et al. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300, 2065–2071 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Geijtenbeek, T.B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  Google Scholar 

  15. Korber, B. et al. Evolutionary and immunological implications of contemporary HIV-1 variation. Br. Med. Bull. 58, 19–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Stanfield, R.L., Gorny, M.K., Williams, C., Zolla-Pazner, S. & Wilson, I.A. Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447–52D. Structure 12, 193–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Bell, C.H. et al. Structure of antibody F425–B4e8 in complex with a V3 peptide reveals a new binding mode for HIV-1 neutralization. J. Mol. Biol. 375, 969–978 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Pan, C., Lu, H., Qi, Z. & Jiang, S. Synergistic efficacy of combination of enfuvirtide and sifuvirtide, the first- and next-generation HIV-fusion inhibitors. AIDS 23, 639–641 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Colman, P.M. New antivirals and drug resistance. Annu. Rev. Biochem. published online, doi:10.1146/annurev.biochem.78.082207.084029 (2 March 2009).

  20. Luftig, M.A. et al. Structural basis for HIV-1 neutralization by a gp41 fusion intermediate-directed antibody. Nat. Struct. Mol. Biol. 13, 740–747 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Wu, L. et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384, 179–183 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Decker, J.M. et al. Antigenic conservation and immunogenicity of the HIV coreceptor binding site. J. Exp. Med. 201, 1407–1419 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, C.C. et al. Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proc. Natl. Acad. Sci. USA 101, 2706–2711 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Farzan, M. et al. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Choe, H. et al. Tyrosine sulfation of human antibodies contributes to recognition of the CCR5 binding region of HIV-1 gp120. Cell 114, 161–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Huang, C.C. et al. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science 317, 1930–1934 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Muster, T. et al. Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKWAS. J. Virol. 68, 4031–4034 (1994).

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Muster, T. et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J. Virol. 67, 6642–6647 (1993).

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Ofek, G. et al. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J. Virol. 78, 10724–10737 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Alam, S.M. et al. The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. J. Immunol. 178, 4424–4435 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Gorny, M.K. et al. Identification of a new quaternary neutralizing epitope on human immunodeficiency virus type 1 virus particles. J. Virol. 79, 5232–5237 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Chan-Hui, P.-Y. et al. Isolation of HIV-neutralizing human monoclonal antibodies from memory B cell repertoire using short term culture and high-throughput binding and neutralization screens. Keystone Symposium on Prevention of HIV/AIDS, poster 119 (Keystone, Colorado, 2009).

  33. Zhou, T. et al. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445, 732–737 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Rossmann, M.G. The canyon hypothesis. Viral Immunol. 2, 143–161 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Smith, T.J., Chase, E.S., Schmidt, T.J., Olson, N.H. & Baker, T.S. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature 383, 350–354 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Collis, A.V., Brouwer, A.P. & Martin, A.C. Analysis of the antigen combining site: correlations between length and sequence composition of the hypervariable loops and the nature of the antigen. J. Mol. Biol. 325, 337–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Saphire, E.O. et al. Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science 293, 1155–1159 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. De Genst, E., Saerens, D., Muyldermans, S. & Conrath, K. Antibody repertoire development in camelids. Dev. Comp. Immunol. 30, 187–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Dooley, H. & Flajnik, M.F. Antibody repertoire development in cartilaginous fish. Dev. Comp. Immunol. 30, 43–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Okuno, Y., Isegawa, Y., Sasao, F. & Ueda, S. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J. Virol. 67, 2552–2558 (1993).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Kashyap, A.K. et al. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc. Natl. Acad. Sci. USA 105, 5986–5991 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265–273 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Ekiert, D.C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Yamaguchi, M., Danev, R., Nishiyama, K., Sugawara, K. & Nagayama, K. Zernike phase contrast electron microscopy of ice-embedded influenza A virus. J. Struct. Biol. 162, 271–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Ksenofontov, A.L., Badun, G.A., Fedorova, N.V. & Kordiukova, L.V. An approach the quantitative determination of the area of glycoprotein spikes at the surface of enveloped viruses. Mol. Biol. (Mosk.) 42, 1093–1096 (2008).

    Article  CAS  Google Scholar 

  46. Dormitzer, P.R., Ulmer, J.B. & Rappuoli, R. Structure-based antigen design: a strategy for next generation vaccines. Trends Biotechnol. 26, 659–667 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Yoshida, R. et al. Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of influenza A viruses. PLoS Pathog. 5, e1000350 (2009).

    Article  PubMed  Google Scholar 

  48. Chen, W. & Dimitrov, D.S. Human monoclonal antibodies and engineered antibody domains as HIV-1 entry inhibitors. Curr. Opin. HIV AIDS 4, 112–117 (2009).

    Article  PubMed  Google Scholar 

  49. Martinez, O., Tsibane, T. & Basler, C.F. Neutralizing anti-influenza virus monoclonal antibodies: therapeutics and tools for discovery. Int. Rev. Immunol. 28, 69–92 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Johnson, P.R. et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat. Med. (in the press).

  51. Chan, C.H., Hadlock, K.G., Foung, S.K. & Levy, S.V. (H)1–69 gene is preferentially used by hepatitis C virus-associated B cell lymphomas and by normal B cells responding to the E2 viral antigen. Blood 97, 1023–1026 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Yu, X. et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 455, 532–536 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Scheid, J.F. et al. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458, 636–640 (2009).

    Article  CAS  Google Scholar 

  54. Burton, D.R., Stanfield, R.L. & Wilson, I.A. Antibody vs. HIV in a clash of evolutionary titans. Proc. Natl. Acad. Sci. USA 102, 14943–14948 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Chan, D.C., Fass, D., Berger, J.M. & Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Russell, R.J. et al. Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion. Proc. Natl. Acad. Sci. USA 105, 17736–17741 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, J.E. et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454, 177–182 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Pantophlet, R., Wilson, I.A. & Burton, D.R. Hyperglycosylated mutants of human immunodeficiency virus (HIV) type 1 monomeric gp120 as novel antigens for HIV vaccine design. J. Virol. 77, 5889–5901 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Wyatt, R. et al. Functional and immunologic characterization of human immunodeficiency virus type 1 envelope glycoproteins containing deletions of the major variable regions. J. Virol. 67, 4557–4565 (1993).

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Wu, L. et al. Enhanced exposure of the CD4-binding site to neutralizing antibodies by structural design of a membrane-anchored HIV-1 gp120 domain. J. Virol. 83, 5077–5086 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, J., Bartesaghi, A., Borgnia, M.J., Sapiro, G. & Subramaniam, S. Molecular architecture of native HIV-1 gp120 trimers. Nature 455, 109–113 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Elsliger, G. Nabel and L. Shapiro for comments on the manuscript; D. Ekiert for assistance with Figure 2; J. Stuckey for Figures 1,2,3; and members of the Structural Biology Section, Vaccine Research Center for comments on the manuscript. Supported by the National Institutes of Health (intramural program and grants) and by the International AIDS Vaccine Initiative.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwong, P., Wilson, I. HIV-1 and influenza antibodies: seeing antigens in new ways. Nat Immunol 10, 573–578 (2009). https://doi.org/10.1038/ni.1746

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing