Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ras orchestrates exit from the cell cycle and light-chain recombination during early B cell development

Abstract

Signals through the pre–B cell antigen receptor (pre-BCR) and interleukin 7 receptor (IL-7R) coordinate pre–B cell population expansion with subsequent recombination of the locus encoding immunoglobulin κ-chain (Igk). Although many 'downstream' effectors of each receptor are known, how they integrate to mediate development has remained unclear. Here we report that pre-BCR-mediated activation of the Ras-MEK-Erk signaling pathway silenced transcription of Ccnd3 (encoding cyclin D3) and coordinated exit from the cell cycle with induction of the transcription factor E2A and the initiation of Igk recombination. IL-7R-mediated activation of the transcription factor STAT5 opposed this pathway by promoting Ccnd3 expression and concomitantly inhibiting Igk transcription by binding to the Igk intronic enhancer and preventing E2A recruitment. Our data show how pre-BCR signaling poises pre–B cells to undergo differentiation after escape from IL-7R signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MEK-Erk regulate both cyclins and the Igk recombination machinery.
Figure 2: Ras-MEK activation required for exit from the cell cycle after IL-7 withdrawal.
Figure 3: Ras-MEK activation is required for the induction of Igk recombination after IL-7 withdrawal.
Figure 4: Aiolos is induced in pre–B cells and can suppress Ccnd3 transcription.
Figure 5: Downstream of Ras, Aiolos is required for suppression of Ccnd3 and exit from the cell cycle after IL-7 withdrawal.
Figure 6: Downregulation of Id3 and upregulation of E2A by Ras-MEK signaling increases E2A binding activity.
Figure 7: More Igk transcription and rearrangement in Id3−/− mice.
Figure 8: STAT5 regulates Igk transcription and binds directly to Eκi.

Similar content being viewed by others

References

  1. Pelanda, R., Braun, U., Hobeika, E., Nussenzweig, M.C. & Reth, M. B cell progenitors are arrested in maturation but have intact VDJ recombination in the absence of Ig-α and Ig-β. J. Immunol. 169, 865–872 (2002).

    Article  CAS  Google Scholar 

  2. Shimizu, T., Mundt, C., Licence, S., Melchers, F. & Martensson, I. VpreB1/VpreB2/λ 5 triple-deficient mice show impaired B cell development but functional allelic exclusion of the IgH locus. J. Immunol. 168, 6286–6293 (2002).

    Article  CAS  Google Scholar 

  3. Erlandsson, L. et al. Both the pre-BCR and the IL-7Rα are essential for expansion at the pre-BII cell stage in vivo. Eur. J. Immunol. 35, 1969–1976 (2005).

    Article  CAS  Google Scholar 

  4. Clark, M.R., Cooper, A.B., Wang, L. & Aifantis, I. The pre-B cell receptor in B cell development: recent advances, persistent questions and conserved mechanisms. Curr. Top. Microbiol. Immunol. 290, 87–104 (2005).

    CAS  PubMed  Google Scholar 

  5. Geier, J.K. & Schlissel, M.S. Pre-BCR signals and the control of Ig gene rearrangements. Semin. Immunol. 18, 31–39 (2006).

    Article  CAS  Google Scholar 

  6. Bassing, C.H. & Alt, F.W. The cellular response to general and programmed DNA double strand breaks. DNA Repair (Amst.) 3, 781–796 (2004).

    Article  CAS  Google Scholar 

  7. Melchers, F. The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat. Rev. Immunol. 5, 578–584 (2005).

    Article  CAS  Google Scholar 

  8. van Loo, P.F., Dingjan, G.M., Maas, A. & Hendriks, R.W. Surrogate-light-chain silencing is not critical for the limitation of pre-B cell expansion but is for the termination of constitutive signaling. Immunity 27, 1–13 (2007).

    Article  Google Scholar 

  9. Jumaa, H., Mitterer, M., Reth, M. & Nielsen, P.J. The absence of SLP65 and Btk blocks B cell development at the preB cell receptor-positive stage. Eur. J. Immunol. 31, 2164–2169 (2001).

    Article  CAS  Google Scholar 

  10. Xu, S., Lee, K.G., Huo, J., Kurosaki, T. & Lam, K.P. Combined deficiencies in Bruton tyrosine kinase and phospholipase Cγ2 arrest B-cell development at a pre-BCR+ stage. Blood 109, 3377–3384 (2007).

    Article  CAS  Google Scholar 

  11. Bai, L. et al. Phospholipase Cγ2 contributes to light-chain gene activation and receptor editing. Mol. Cell. Biol. 27, 5957–5967 (2007).

    Article  CAS  Google Scholar 

  12. Young, F. et al. Influnence of immunoglobulin heavy- and light-chain expression on B-cell differentation. Genes Dev. 8, 1043–1057 (1994).

    Article  CAS  Google Scholar 

  13. Iritani, B.M., Forbush, K.A., Farrar, M.A. & Perlmutter, R.M. Control of B cell development by Ras-mediated activation of Raf. EMBO J. 16, 7019–7031 (1997).

    Article  CAS  Google Scholar 

  14. Shaw, A.C., Swat, W., Ferrini, R., Davidson, L. & Alt, F.W. Activated Ras signals developmental progression of recombinase-activating gene (RAG)-deficient pro-B lymphocytes. J. Exp. Med. 189, 123–129 (1999).

    Article  CAS  Google Scholar 

  15. Shaw, A.C., Swat, W., Davidson, L. & Alt, F.W. Induction of Ig light chain gene rearrangement in heavy chain-deficient B cells by activated Ras. Proc. Natl. Acad. Sci. USA 96, 2239–2243 (1999).

    Article  CAS  Google Scholar 

  16. Lu, R., Kay, L., Lancki, D.W. & Singh, H. IRF-4,8 orchestrate the pre-B to B transition in lymphocyte development. Genes Dev. 17, 1703–1708 (2003).

    Article  CAS  Google Scholar 

  17. Ma, S., Pathak, S., Trinh, L. & Lu, R. Interferon regulatory factors 7 and 8 induce the expression of Ikaros and Aiolos to down-regulate pre-B cell receptor and promote cell-cycle withdrawal in pre-B cell development. Blood 111, 1396–1403 (2008).

    Article  CAS  Google Scholar 

  18. Johnson, K. et al. Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling. Immunity 28, 335–345 (2008).

    Article  CAS  Google Scholar 

  19. Schlissel, M.S. & Baltimore, D. Regulation of activation and recombination of the murine Igκ locus. Immunol. Rev. 200, 215–223 (2004).

    Article  CAS  Google Scholar 

  20. Romanow, W.J. et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol. Cell 5, 343–353 (2000).

    Article  CAS  Google Scholar 

  21. Inlay, M.A., Tian, H., Lin, T. & Xu, Y. Important roles for E protein binding sites within the immunoglobulin κ chain intronic enhance in activating V-κJ-κ rearrangement. J. Exp. Med. 200, 1205–1211 (2004).

    Article  CAS  Google Scholar 

  22. Lazorchak, A.S., Schlissel, M.S. & Zhuang, Y. E2A and IRF-4/Pip promote chromatin modification and transcription of the immunoglobulin κ locus in pre-B cells. Mol. Cell. Biol. 26, 810–821 (2006).

    Article  CAS  Google Scholar 

  23. Kee, B.L., Quong, M.W. & Murre, C. E2A proteins: essential regulators at multiple stages of B-cell development. Immunol. Rev. 175, 138–149 (2000).

    Article  CAS  Google Scholar 

  24. Cooper, A.B. et al. A unique function for cyclin D3 in early B cell development. Nat. Immunol. 7, 489–497 (2006).

    Article  CAS  Google Scholar 

  25. Herzog, S. et al. SLP-65 regulates immunoglobulin light chain gene recombination through the PI(3)K-PKB-Foxo pathway. Nat. Immunol. 9, 623–631 (2008).

    Article  CAS  Google Scholar 

  26. Fleming, H.E. & Paige, C.J. Pre-B cell receptor signaling mediates selective response to IL-7 at the pro-B to pre-B cell transition via an ERK/MAP kinase-dependent pathway. Immunity 15, 521–531 (2001).

    Article  CAS  Google Scholar 

  27. Halcomb, K.E. et al. Btk and phospholipase Cγ2 can function independently during B cell development. Eur. J. Immunol. 37, 1033–1042 (2007).

    Article  CAS  Google Scholar 

  28. Morgan, B. et al. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J. 16, 2004–2013 (1997).

    Article  CAS  Google Scholar 

  29. Thompson, E.C. et al. Ikaros DNA-binding proteins as integral components of B cell developmental-stage-specific regulatory circuits. Immunity 26, 335–344 (2007).

    Article  CAS  Google Scholar 

  30. Wang, J.H. et al. Aiolos regulates B cell activation and maturation to effector state. Immunity 9, 543–553 (1998).

    Article  CAS  Google Scholar 

  31. Georgopoulos, K. Transcription factors required for lymphoid lineage commitment. Curr. Opin. Immunol. 9, 222–227 (1997).

    Article  CAS  Google Scholar 

  32. Meyer, K.B., Skogberg, M., Margenfeld, C., Ireland, J. & Petterson, S. Repression of the immunoglobulin heavy chain 3′ enhancer by helix-loop-helix protein Id3 via a functionally important E47/E12 binding site: implications for developmental control of enhancer function. Eur. J. Immunol. 25, 1770–1777 (1995).

    Article  CAS  Google Scholar 

  33. Wilson, R.B. et al. Repression of immunoglobulin enhancers by the helix-loop-helix protein Id: implications for B-lymphoid-cell development. Mol. Cell. Biol. 11, 6185–6191 (1991).

    Article  CAS  Google Scholar 

  34. Bertolino, E. et al. Regulation of interleukin 7-dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nat. Immunol. 6, 836–843 (2005).

    Article  CAS  Google Scholar 

  35. Palmer, M.J. et al. Interleukin-7 receptor signaling network: an integrated systems perspective. Cell. Mol. Immunol. 5, 79–89 (2008).

    Article  CAS  Google Scholar 

  36. Onishi, T. et al. Identification and charactgerization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol. Cell. Biol. 18, 3871–3879 (1998).

    Article  CAS  Google Scholar 

  37. Kelly, E., Won, A., Refaeli, Y. & Parijs, L.V. IL-2 and related cytokines can promote T cell survival by activating AKT. J. Immunol. 168, 597–603 (2002).

    Article  CAS  Google Scholar 

  38. Goetz, C.A., Harmon, I.R., O'Neil, J.J., Burchill, M.A. & Farrar, M.A. STAT5 activation underlies IL7 receptor-dependent B cell development. J. Immunol. 172, 4770–4778 (2004).

    Article  CAS  Google Scholar 

  39. Crespo, P. & Leon, J. Ras proteins in the control of the cell cycle and cell differentiation. Cell. Mol. Life Sci. 57, 1613–1636 (2000).

    Article  CAS  Google Scholar 

  40. Bain, G. et al. Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade. Nat. Immunol. 2, 165–171 (2001).

    Article  CAS  Google Scholar 

  41. Hsu, L.Y. et al. A conserved transcriptional enhancer regulates RAG gene expression in developing B cells. Immunity 19, 105–117 (2003).

    Article  CAS  Google Scholar 

  42. Yasuda, T. et al. Erk kinases link pre-B cell receptor signaling to transcriptional events required for early B cell expansion. Immunity 28, 499–508 (2008).

    Article  CAS  Google Scholar 

  43. Walker, S.B., Nelson, E.A. & Frank, D.A. STAT5 represses BCL6 expression by binding to a regulatory region frequently mutated in lymphomas. Oncogene 26, 224–233 (2006).

    Article  Google Scholar 

  44. Hennighausen, L. & Robinson, G.W. Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. Genes Dev. 22, 711–721 (2008).

    Article  Google Scholar 

  45. Amin, R.H. & Schlissel, M.S. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat. Immunol. 9, 613–622 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Gajewski (University of Chicago) for cDNA encoding CA-Ras, CA-STAT5B and DN-Ras; N.G. Ahn (University of Colorado, Boulder) for cDNA encoding DN-MEK; M. Veselits for technical assistance; R. Duggan and D. Leclerc for cell-sorting services; and F. Gounari for discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.M. designed, did, interpreted and prepared figures of most experiments and assisted in preparing the initial manuscript; S.E.P. assisted in the design and analysis of many experiments; K.O. assisted with chromatin immunoprecipitation; K.G. provided Aiolos-specific reagents and scientific advice and assisted in preparing the manuscript; B.L.K. provided E2A-specific reagents, contributed to the design of some experiments, provided scientific advice and edited the manuscript; H.S. assisted in establishing many of the experimental systems, provided substantial scientific input and edited the final manuscript; and M.R.C. oversaw the entire project and prepared the final manuscript.

Corresponding author

Correspondence to Marcus R Clark.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 961 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, M., Powers, S., Ochiai, K. et al. Ras orchestrates exit from the cell cycle and light-chain recombination during early B cell development. Nat Immunol 10, 1110–1117 (2009). https://doi.org/10.1038/ni.1785

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1785

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing