Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nutrient budgets in the subtropical ocean gyres dominated by lateral transport

Abstract

Ocean circulation replenishes surface nutrients depleted by biological production and export. Vertical processes are thought to dominate, but estimated vertical nutrient fluxes are insufficient to explain observed net productivity in the subtropical ocean gyres1. Lateral inputs help balance the North Atlantic nutrient budget2,3,4,5,6,7, but their importance for other gyres has not been demonstrated. Here we use an ocean model that couples circulation and ecosystem dynamics to show that lateral transport and biological uptake of inorganic and organic forms of nitrogen and phosphorus from the gyre margins exceeds the vertical delivery of nutrients, supplying 24–36% of the nitrogen and 44–67% of the phosphorus required to close gyre nutrient budgets. At the Bermuda and Hawaii time-series sites, nearly half of the annual lateral supply by lateral transport occurs during the summer-to-fall stratified period, helping explain seasonal patterns of inorganic carbon drawdown and nitrogen fixation. Our study confirms the importance of upper-ocean lateral nutrient transport for understanding the biological cycles of carbon and nutrients in the ocean’s largest biome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nitrogen and phosphorus budgets for the five ocean gyres.
Figure 2: Lateral supply and uptake of allochthonous DIN and DIP.
Figure 3: Lateral supply and uptake of allochthonous DON and DOP.
Figure 4: Seasonal new nutrient fluxes at the BATS and HOT time-series sites.

Similar content being viewed by others

References

  1. Jenkins, W. J. & Doney, S. C. The subtropical nutrient spiral. Glob. Biogeochem. Cycles 17, 1110 (2003).

    Article  Google Scholar 

  2. Willams, R. G. & Follows, M. J. The Ekman transfer of nutrients and maintenance of new production over the North Atlantic. Deep-Sea Res. I 45, 461–489 (1998).

    Article  Google Scholar 

  3. Oschlies, A. Nutrient supply to the surface waters of the North Atlantic: a model study. J. Geophys. Res. 107, 3046 (2002).

    Article  Google Scholar 

  4. Williams, R. G. & Follows, M. J. in Ocean Biogeochemistry (ed. Fasham, M. J. R.) 19–51 (Springer, 2003).

    Book  Google Scholar 

  5. Torres-Valdés, S. et al. Distribution of dissolved organic nutrients and their effect on export production over the Atlantic Ocean. Glob. Biogeochem. Cycles 23, GB4019 (2009).

    Article  Google Scholar 

  6. Palter, J. B., Marinov, I., Sarmiento, J. L. & Gruber, N. Chemical Oceanography of Frontal Zones 1–38 (Springer, 2013).

    Google Scholar 

  7. Reynolds, S., Mahaffey, C., Roussenov, V. & Williams, R. G. Evidence for production and lateral transport of dissolved organic phosphorus in the eastern subtropical North Atlantic. Glob. Biogeochem. Cycles 28, 805–824 (2014).

    Article  Google Scholar 

  8. Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).

    Article  Google Scholar 

  9. Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11, 235–266 (1997).

    Article  Google Scholar 

  10. Duce, R. A. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897 (2008).

    Article  Google Scholar 

  11. Johnson, K. S., Riser, S. C. & Karl, D. M. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre. Nature 465, 1062–1065 (2010).

    Article  Google Scholar 

  12. Palter, J. B., Lozier, M. S. & Barber, R. T. The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre. Nature 437, 687–692 (2005).

    Article  Google Scholar 

  13. Dave, A. C., Barton, A. D., Lozier, M. S. & McKinley, G. A. What drives seasonal change in oligotrophic area in the subtropical North Atlantic? J. Geophys. Res. Oceans 120, 3958–3969 (2015).

    Article  Google Scholar 

  14. Fung, I. Y. et al. Iron supply and demand in the upper ocean. Glob. Biogeochem. Cycles 14, 281–295 (2000).

    Article  Google Scholar 

  15. Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).

    Article  Google Scholar 

  16. Teng, Y. C., Primeau, F. W., Moore, J. K., Lomas, M. W. & Martiny, A. C. Global- scale variations of the ratios of carbon to phosphorus in exported marine organic matter. Nat. Geosci. 7, 895–898 (2014).

    Article  Google Scholar 

  17. Letscher, R. T., Moore, J. K., Teng, Y. C. & Primeau, F. Variable C:N:P stoichiometry of dissolved organic matter cycling in the Community Earth System Model. Biogeosciences 12, 209–221 (2015).

    Article  Google Scholar 

  18. Letscher, R. T., Hansell, D. A., Carlson, C. A., Lumpkin, R. & Knapp, A. N. Dissolved organic nitrogen in the global surface ocean: distribution and fate. Glob. Biogeochem. Cycles 27, 141–153 (2013).

    Article  Google Scholar 

  19. Orchard, E. D., Ammerman, J. W., Lomas, M. W. & Dyhrman, S. T. Dissolved inorganic and organic phosphorus uptake in Trichodesmium and the microbial community: the importance of phosphorus ester in the Sargasso Sea. Limnol. Oceanogr. 55, 1390–1399 (2010).

    Article  Google Scholar 

  20. Dyhrman, S. T. & Ruttenberg, K. C. Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: implications for dissolved organic phosphorus remineralization. Limnol. Oceanogr. 51, 1381–1390 (2006).

    Article  Google Scholar 

  21. Dyhrman, S. T. et al. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439, 68–71 (2006).

    Article  Google Scholar 

  22. Lomas, M. W. et al. Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP). Biogeosciences 7, 695–710 (2010).

    Article  Google Scholar 

  23. Mather, R. L. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nat. Geosci. 1, 439–443 (2008).

    Article  Google Scholar 

  24. Letscher, R. T. & Moore, J. K. Preferential remineralization of dissolved organic phosphorus and non-Redfield DOM dynamics in the global ocean: impacts on marine productivity, nitrogen fixation, and carbon export. Glob. Biogeochem. Cycles 29, 325–340 (2015).

    Article  Google Scholar 

  25. Bates, N. R., Michaels, A. F. & Knap, A. H. Seasonal and interannual variability of oceanic carbon dioxide species at the US JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep-Sea Res. II 43, 347–383 (1996).

    Article  Google Scholar 

  26. Gruber, N., Keeling, C. D. & Stocker, T. F. Carbon-13 constraints on the seasonal inorganic carbon budget at the BATS site in the northwestern Sargasso Sea. Deep-Sea Res. I 45, 673–717 (1998).

    Article  Google Scholar 

  27. Keeling, C. D., Brix, H. & Gruber, N. Seasonal and long-term dynamics of the upper ocean carbon cycle at Station ALOHA near Hawaii. Glob. Biogeochem. Cycles 18, GB4006 (2004).

    Article  Google Scholar 

  28. Church, M. J., Lomas, M. W. & Muller-Karger, F. Sea change: charting the course for biogeochemical ocean time-series research in a new millennium. Deep-Sea Res. II 93, 2–15 (2013).

    Article  Google Scholar 

  29. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  Google Scholar 

  30. Fu, W., Randerson, J. & More, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in CMIP5 models. Biogeosci. Discuss. 12, 12851–12897 (2015).

    Article  Google Scholar 

  31. Lozier, M. S., Dave, A. C., Palter, J. B., Gerber, L. M. & Barber, R. T. On the relationship between stratification and primary productivity in the North Atlantic. Geophys. Res. Lett. 38, L18609 (2011).

    Article  Google Scholar 

  32. Smith, R. et al. The Parallel Ocean Program (POP) Reference Manual. Ocean Component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM) Rep. LAUR-01853 (UCAR, 2010); http://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf

  33. Getzlaff, J. & Dietze, H. Effects of increased isopycnal diffusivity mimicking the unresolved equatorial intermediate current system in an Earth system climate model. Geophys. Res. Lett. 40, 2166–2170 (2013).

    Article  Google Scholar 

  34. Bardin, A., Primeau, F. & Lindsay, K. An offline implicit solver for simulating prebomb radiocarbon. Ocean Modell. 73, 45–58 (2014).

    Article  Google Scholar 

  35. McGillicuddy, D. J. et al. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394, 263–266 (1998).

    Article  Google Scholar 

  36. Garcia, H. E. et al. World Ocean Atlas 2009, Nutrients (Phosphate, Nitrate, and Silicate) Vol. 4 (US Government Printing Office, 2010).

    Google Scholar 

Download references

Acknowledgements

This work was supported by awards ER65358 and DE-SC0012550 from the US DOE Office of Biological and Environmental Research to F.P. and J.K.M.

Author information

Authors and Affiliations

Authors

Contributions

R.T.L., F.P. and J.K.M. conceived the study. R.T.L. and J.K.M. performed the model simulation. F.P. and R.T.L. developed new tracer transport diagnostics. R.T.L. wrote the paper with input from F.P. and J.K.M.

Corresponding author

Correspondence to Robert T. Letscher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 15648 kb)

Supplementary Information

Supplementary Information (XLSX 43 kb)

Supplementary Information

Supplementary Information (XLSX 41 kb)

Supplementary Information

Supplementary Information (XLSX 43 kb)

Supplementary Information

Supplementary Information (XLSX 39 kb)

Supplementary Information

Supplementary Information (XLSX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letscher, R., Primeau, F. & Moore, J. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport. Nature Geosci 9, 815–819 (2016). https://doi.org/10.1038/ngeo2812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2812

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing