Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Formation of gullies on Mars by debris flows triggered by CO2 sublimation

Abstract

Martian gully landforms resemble terrestrial debris flows formed by the action of liquid water and have thus been interpreted as evidence for potential habitable environments on Mars within the past few millennia. However, ongoing gully formation has been detected under surface conditions much too cold for liquid water, but at times in the martian year when a thin layer of seasonal CO2 frost is present and defrosting above the regolith. These observations suggest that the CO2 condensation–sublimation cycle could play a role in gully formation. Here we use a thermo-physical numerical model of the martian regolith underlying a CO2 ice layer and atmosphere to show that the pores beneath the ice layer can be filled with CO2 ice and subjected to extreme pressure variations during the defrosting season. The subsequent gas fluxes can destabilize the regolith material and induce gas-lubricated debris flows with geomorphic characteristics similar to martian gullies. Moreover, we find that subsurface CO2 ice condensation, sublimation and pressurization occurs at conditions found at latitudes and slope orientations where gullies are observed. We conclude that martian gullies can result from geologic dry ice processes that have no terrestrial analogues and do not require liquid water. Such dry ice processes may have helped shape the evolution of landforms elsewhere on the martian surface.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CO2 sublimation and condensation in the porous soil below the seasonal CO2 ice sheet simulated on the Russell crater megadune (54.5° S, 12.7° E).
Figure 2: Illustration of the sequence of events leading to the formation of CO2-regolith viscous flows and sometimes incision in the icy-dependent mantle.
Figure 3: Illustration of the potential effect of the viscous flows in the formation of gullies on Mars.
Figure 4: Total amount of CO2 gas (m3 yr−1, calculated as in Fig. 1) predicted to diffuse upward through the soil pores below the seasonal CO2 ice layer, as a function of latitude and slope orientation (180° means southward, 0° northward and slope angle is 30°) for obliquities of 25.2° (as today) and 35.2° (as 860,000 years ago).

References

  1. Malin, M. C. & Edgett, K. S. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330–2335 (2000).

    Google Scholar 

  2. Mangold, N., Costard, F. & Forget, F. Debris flows over sand dunes on Mars: evidence for liquid water. J. Geophys. Res. 108, 5027 (2003).

    Google Scholar 

  3. Balme, M. et al. Orientation and distribution of recent gullies in the southern hemisphere of Mars: observations from High Resolution Stereo Camera/Mars Express (HRSC/MEX) and Mars Orbiter Camera/Mars Global Surveyor (MOC/MGS) data. J. Geophys. Res. 111, E05001 (2006).

    Google Scholar 

  4. Costard, F., Forget, F., Mangold, N. & Peulvast, J. P. Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity. Science 295, 110–113 (2002).

    Google Scholar 

  5. Harrison, T. N., Osinski, G. R., Tornabene, L. L. & Jones, E. Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera (CTX) and implications for their formation. Icarus 252, 236–254 (2015).

    Google Scholar 

  6. Mellon, M. T. & Phillips, R. J. Recent gullies on Mars and the source of liquid water. J. Geophys. Res. 106, 23165–23180 (2001).

    Google Scholar 

  7. Dundas, C. M., Diniega, S., Hansen, C. J., Byrne, S. & McEwen, A. S. Seasonal activity and morphological changes in martian gullies. Icarus 220, 124–143 (2012).

    Google Scholar 

  8. Dundas, C. M., Diniega, S. & McEwen, A. S. Long-term monitoring of martian gully formation and evolution with MRO/HiRISE. Icarus 251, 244–263 (2015).

    Google Scholar 

  9. Dundas, C. M., McEwen, A. S., Diniega, S., Byrne, S. & Martinez-Alonso, S. New and recent gully activity on Mars as seen by HiRISE. Geophys. Res. Lett. 37, L07202 (2010).

    Google Scholar 

  10. Reiss, D., Erkeling, G., Bauch, K. E. & Hiesinger, H. Evidence for present day gully activity on the Russell crater dune field, Mars. Geophys. Res. Lett. 37, L06203 (2010).

    Google Scholar 

  11. Hansen, C. J. et al. Seasonal erosion and restoration of Mars’ northern polar dunes. Science 331, 575–578 (2011).

    Google Scholar 

  12. Hoffman, N. Active polar gullies on Mars and the role of carbon dioxide. Astrobiology 2, 313–323 (2002).

    Google Scholar 

  13. Cedillo-Flores, Y., Treiman, A. H., Lassue, J. & Clifford, S. M. CO2 gas fluidization in the initiation and formation of martian polar gullies. Geophys. Res. Lett. 38, L21202 (2011).

    Google Scholar 

  14. Pilorget, C., Edwards, C. S., Ehlmann, B. E., Forget, F. & Millour, E. Material ejection by the cold jets and temperature evolution of the south seasonal polar cap of Mars from THEMIS/CRISM observations and implications for surface properties. J. Geophys. Res. 118, 2520–2536 (2013).

    Google Scholar 

  15. Stewart, S. T. & Nimmo, F. Surface runoff features on Mars: testing the carbon dioxide formation hypothesis. J. Geophys. Res. 107, 5069 (2002).

    Google Scholar 

  16. Diniega, S. et al. A new dry hypothesis for the formation of martian linear gullies. Icarus 225, 526–537 (2013).

    Google Scholar 

  17. Forget, F. et al. Improved general circulation models of the martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155–24176 (1999).

    Google Scholar 

  18. Pilorget, C., Forget, F., Millour, E., Vincendon, M. & Madeleine, J. B. Dark spots and cold jets in the polar regions of Mars: new clues from a thermal model of surface CO2 ice. Icarus 213, 131–149 (2011).

    Google Scholar 

  19. Aharonson, O. & Schorghofer, N. Subsurface ice on Mars with rough topography. J. Geophys. Res. 111, E11007 (2006).

    Google Scholar 

  20. Reiss, D. & Jaumann, R. Recent debris flows on Mars: seasonal observations of the Russell crater dune field. Geophys. Res. Lett. 30, 1321 (2003).

    Google Scholar 

  21. Gardin, E., Allemand, P., Quantin, C. & Thollot, P. Defrosting, dark flow features, and dune activity on Mars: example in Russell crater. J. Geophys. Res. 115, E06016 (2010).

    Google Scholar 

  22. Jouannic, G. et al. Morphological and mechanical characterization of gullies in a periglacial environment: the case of the Russell crater dune (Mars). Planet. Space Sci. 71, 38–54 (2012).

    Google Scholar 

  23. Kieffer, H. H., Christensen, P. R. & Titus, T. N. CO2 jets formed by sublimation beneath translucent slab ice in Mars’ seasonal south polar ice cap. Nature 442, 793–796 (2006).

    Google Scholar 

  24. Félix, G. & Thomas, N. Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet. Sci. Lett. 221, 197–213 (2004).

    Google Scholar 

  25. Ishida, M., Hatano, H. & Shirai, T. The flow of solid particles in an aerated inclined channel. Powder Technol. 27, 7–12 (1980).

    Google Scholar 

  26. Schügerl, K. Fluidization (eds Davidson, J. F. & Harrison, D.) 261–292 (Academic, 1971).

    Google Scholar 

  27. Mangold, N. et al. Sinuous gullies on Mars: frequency, distribution, and implications for flow properties. J. Geophys. Res. 115, E11001 (2010).

    Google Scholar 

  28. Thomas, N., Hansen, C. J., Portyankina, G. & Russell, P. S. HiRISE observations of gas sublimation-driven activity in Mars’ southern polar regions: II. Surficial deposits and their origins. Icarus 205, 296–310 (2010).

    Google Scholar 

  29. Roche, O. et al. Dynamic pore-pressure variations induce substrate erosion by pyroclastic flows. Geology 41, 1107–1110 (2013).

    Google Scholar 

  30. Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004).

    Google Scholar 

  31. Kreslavsky, M. A. & Head, J. W. Kilometer-scale roughness of Mars: results from MOLA data analysis. J. Geophys. Res. 105, 26695–26712 (2000).

    Google Scholar 

  32. Kreslavsky, M. A. & Head, J. W. North-south topographic slope asymmetry on Mars: evidence for insolation-related erosion at high obliquity. Geophys. Res. Lett. 30, 1815 (2003).

    Google Scholar 

  33. Piqueux, S. & Christensen, P. R. North and south subice gas flow and venting of the seasonal caps of Mars: a major geomorphological agent. J. Geophys. Res. 113, E06005 (2008).

    Google Scholar 

  34. Hansen, C. J. et al. Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes. Icarus 225, 881–897 (2013).

    Google Scholar 

  35. Conway, S. J. & Balme, M. R. Decameter thick remnant glacial ice deposits on Mars. Geophys. Res. Lett. 41, 5402–5409 (2014).

    Google Scholar 

  36. Toon, O. B., McKay, C. P., Ackerman, T. P. & Santhanam, K. Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res. 94, 16287–16301 (1989).

    Google Scholar 

  37. Ockert-Bell, M. E., Bell, J. F., Pollack, J. B., McKay, C. P. & Forget, F. Absorption and scattering properties of the martian dust in the solar wavelengths. J. Geophys. Res. 102, 9039–9050 (1997).

    Google Scholar 

  38. Spiga, A. & Forget, F. Fast and accurate estimation of solar irradiance on martian slopes. Geophys. Res. Lett. 35, L15201 (2008).

    Google Scholar 

  39. Hapke, B. W., Shepard, M. K., Nelson, R. M., Smythe, W. D. & Piatek, J. L. A quantitative test of the ability of models based on the equation of radiative transfer to predict the bidirectional reflectance of a well-characterized medium. Icarus 199, 210–218 (2009).

    Google Scholar 

  40. Kieffer, H. H. Cold jets in the martian polar caps. J. Geophys. Res. 112, E08005 (2007).

    Google Scholar 

  41. Schubert, G., Solomon, S. C., Turcotte, D. L., Drake, M. J. & Sleep, N. H. in Mars (eds Keiffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 147–183 (Univ. Arizona Press, 1992).

    Google Scholar 

  42. Hourdin, F., Le Van, P., Forget, F. & Talagrand, O. Meteorological variability and the annual surface pressure cycle on Mars. J. Atmos. Sci. 50, 3625–3640 (1993).

    Google Scholar 

  43. James, P. B., Kieffer, H. H. & Paige, D. A. in Mars (eds Keiffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 934–960 (Univ. Arizona Press, 1992).

    Google Scholar 

  44. Atwood-Stone, C. & McEwen, A. S. Avalanche slope angles in low-gravity environments from active martian sand dunes. Geophys. Res. Lett. 40, 2929–2934 (2013).

    Google Scholar 

  45. Eames, I. & Gilbertson, M. A. Aerated granular flow over a horizontal rigid surface. J. Fluid Mech. 424, 169–195 (2000).

    Google Scholar 

  46. Jop, P., Forterre, Y. & Pouliquen, O. A constitutive law for dense granular flows. Nature 441, 727–730 (2006).

    Google Scholar 

  47. Jessop, D. E. et al. LiDAR derived morphology of the 1993 Lascar pyroclastic flow deposits, and implication for flow dynamics and rheology. J. Volcanol. Geotherm. Res. 245–246, 81–97 (2012).

    Google Scholar 

Download references

Acknowledgements

We would like to thank A. Mangeney, M. Vincendon, P.-Y. Meslin and L. Kerber for fruitful discussions about this work. We are also grateful to our colleagues at Caltech, IAS and LMD for inspiration and advice. C.P. acknowledges partial support from NNX14AG54G and CNES. Finally, we thank C. Dundas for constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

C.P. and F.F. developed the model and wrote the manuscript. C.P. run the simulations and performed the analyses.

Corresponding author

Correspondence to C. Pilorget.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1005 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilorget, C., Forget, F. Formation of gullies on Mars by debris flows triggered by CO2 sublimation. Nature Geosci 9, 65–69 (2016). https://doi.org/10.1038/ngeo2619

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2619

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing