Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Giant ore deposits formed by optimal alignments and combinations of geological processes

Subjects

Abstract

Giant ore deposits contain anomalously large quantities of metal and are priority targets for mineral exploration companies. It is debated whether these giant deposits have a unique mode of formation. Alternatively they may simply represent the extreme end of a spectrum of deposit sizes, formed by an optimum coincidence of common geological processes to build unusually large accumulations of metal. If formed by unique processes, the occurrence of giant ore deposits may be difficult to predict. Conversely, if formed by common processes, understanding the mechanisms that lead to optimum circumstances for giant metal deposits could help with exploration. A review of several giant porphyry copper–molybdenum–gold and epithermal gold–silver deposits reveals that many have characteristics consistent with formation during the optimization of normal ore-forming processes. In several cases, the large size of the deposit reflects specific factors, such as distinct tectonic configurations, reactive host rocks or focused fluid flow, that are not unusual by themselves but have helped to enhance the overall process. Thus, I suggest that effective exploration for giant deposits should seek distinct conditions within fundamentally prospective geological settings that might lead to enhanced ore-forming processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Giant ore deposits.
Figure 2: Key features of giant ore deposits.

Similar content being viewed by others

References

  1. Singer, D. A. World class base and precious metal deposits: A quantitative analysis. Econ. Geol. 90, 88–104 (1995).

    Article  Google Scholar 

  2. Jaireth, S. & Huston, D. Metal endowment of cratons, terranes and districts: Insights from a quantitative analysis of regions with giant and super-giant deposits. Ore Geol. Rev. 38, 288–303 (2010).

    Article  Google Scholar 

  3. Ballantyne, G., Maughan, C. J. & Smith, T. in Giant Ore Deposits II, Proceedings (ed. Clark, A. H.) 300–315 (QMinEx Associates, 1995).

    Google Scholar 

  4. Keith, J. D. et al. The role of magmatic sulfides and mafic alkaline magmas in the Bingham and Tintic mining districts, Utah. J. Petrol. 38, 1679–1690 (1997).

    Article  Google Scholar 

  5. Core, D. P., Kesler, S. E. & Essene, E. J. Unusually Cu-rich magmas associated with giant porphyry copper deposits: Evidence from Bingham, Utah. Geology 34, 41–44 (2006).

    Article  Google Scholar 

  6. Pettke, T., Oberli, F. & Heinrich, C. A. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth Planet. Sci. Lett. 296, 267–277 (2010).

    Article  Google Scholar 

  7. Hou, Z. et al. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geol. Rev. 36, 25–51 (2009).

    Article  Google Scholar 

  8. Richards, J. P. Postsubduction porphyry Cu–Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 37, 247–250 (2009).

    Article  Google Scholar 

  9. Shafiei, B., Haschke, M. & Shahabpour, J. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineral. Depos. 44, 265–283 (2009).

    Article  Google Scholar 

  10. Cannell, J., Cooke, D. R., Walshe, J. L. & Stein, H. Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu–Mo deposit. Econ. Geol. 100, 979–1003 (2005).

    Article  Google Scholar 

  11. Skewes, M. A., Arévalo, A., Floody, R., Zuñiga, P. H. & Stern, C. R. The giant El Teniente breccia deposit: Hypogene copper distribution and emplacement. Soc. Econ. Geol. Spec. Publ. 9, 299–332 (2002).

    Google Scholar 

  12. Rabbia, O. M., Hernández, L. B., French, D. H., King, R. W. & Ayers, J. C. The El Teniente porphyry Cu–Mo deposit from a hydrothermal rutile perspective. Mineral. Depos. 44, 849–866 (2009).

    Article  Google Scholar 

  13. Vry, V. H., Wilkinson, J. J., Seguel, J. & Millan, J. Multistage intrusion, brecciation, and veining at El Teniente, Chile: Evolution of a nested porphyry system. Econ. Geol. 105, 119–153 (2010).

    Article  Google Scholar 

  14. Klemm, L. M., Pettke, T., Heinrich, C. A. & Campos, E. Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu–Mo ore deposition from low-salinity magmatic fluids. Econ. Geol. 102, 1021–1046 (2007).

    Article  Google Scholar 

  15. Maksaev, V. et al. New chronology for El Teniente, Chilean Andes, from U–Pb, 40Ar/39Ar, Re–Os, and fission-track dating: Implications for the evolution of a supergiant porphyry Cu–Mo deposit. Soc. Econ. Geol. Spec. Publ. 11, 15–54 (2004).

    Google Scholar 

  16. Kay, S. M., Mpodozis, C. & Coira, B. Neogene magmatism, tectonism, and mineral deposits of the Central Andes (22 to 33° S latitude). Soc. Econ. Geol. Spec. Publ. 7, 27–59 (1999).

    Google Scholar 

  17. Stern, C. R., Skewes, M. A. & Arevalo, A. Magmatic evolution of the giant El Teniente Cu–Mo deposit, Central Chile. J. Petrol. 52, 1591–1617 (2011).

    Article  Google Scholar 

  18. Muñoz, M., Charrier, R., Fanning, C. M., Maksaev, V. & Deckart, K. Zircon trace element and O–Hf isotope analyses of mineralized intrusions from El Teniente ore deposit, Chilean Andes: Constraints on the source and magmatic evolution of porphyry Cu–Mo related magmas. J. Petrol. 53, 1091–1122 (2012).

    Article  Google Scholar 

  19. Manske, S. L. & Paul, A. H. Geology of a major new porphyry copper center in the Superior (Pioneer) district, Arizona. Econ. Geol. 97, 197–220 (2002).

    Article  Google Scholar 

  20. Sillitoe, R. H. Porphyry copper systems. Econ. Geol. 105, 3–41 (2010).

    Article  Google Scholar 

  21. Pollard, P. J., Taylor, R. G. & Peters, L. Ages of intrusion, alteration, and mineralization at the Grasberg Cu–Au deposit, Papua, Indonesia. Econ. Geol. 100, 1005–1020 (2005).

    Article  Google Scholar 

  22. Cloos, M. & Housh, T. B. Collisional delamination: Implications for porphyry-type Cu–Au ore formation in New Guinea. Arizona Geol. Soc. Digest 22, 235–244 (2008).

    Google Scholar 

  23. Sapiie, B. & Cloos, M. Strike-slip faulting in the core of the Central Range of west New Guinea: Ertsberg Mining District, Indonesia. Geol. Soc. Am. Bull. 116, 277–293 (2004).

    Article  Google Scholar 

  24. Paterson, J. T. & Cloos, M. in Super Porphyry Copper and Gold Deposits: A Global Perspective Vol. 2 (ed. Porter, T. M.) 331–355 (Porter Geoscience Consulting, 2005).

    Google Scholar 

  25. Meinert, L. D., Hefton, K. K., Mayes, D. & Tasiran, I. Geology, zonation, and fluid evolution of the Big Gossan Cu–Au skarn deposit, Ertsberg district, Irian Jaya. Econ. Geol. 92, 509–534 (1997).

    Article  Google Scholar 

  26. Perelló J. et al. Oyu Tolgoi, Mongolia: Siluro-Devonian porphyry Cu–Au–(Mo) and high-sulfidation Cu mineralization with a Cretaceous chalcocite blanket. Econ. Geol. 96, 1407–1428 (2001).

    Article  Google Scholar 

  27. Wainwright, A. J. et al. Devonian and Carboniferous arcs of the Oyu Tolgoi porphyry Cu–Au district, South Gobi region, Mongolia. Geol. Soc. Am. Bull. 123, 306–328 (2011).

    Article  Google Scholar 

  28. Khashgerel, B. E., Rye, R. O., Hedenquist, J. W. & Kavalieris, I. Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu–Au System, South Gobi, Mongolia. Econ. Geol. 101, 503–522 (2006).

    Article  Google Scholar 

  29. Khashgerel, B-E., Rye, R. O., Kavalieris, I. & Hayashi, K-i. The sericitic to advanced argillic transition: stable isotope and mineralogical characteristics from the Hugo Dummett porphyry Cu–Au deposit, Oyu Tolgoi District, Mongolia. Econ. Geol. 104, 1087–1110 (2009).

    Article  Google Scholar 

  30. Müller, A. et al. Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Mineral. Depos. 45, 707–727 (2010).

    Article  Google Scholar 

  31. Laznicka, P. Quantitative relationships among giant deposits of metals. Econ. Geol. 94, 455–473 (1999).

    Article  Google Scholar 

  32. Simmons, S. F., White, N. C. & John, D. A. Geological characteristics of epithermal precious and base metal deposits. Economic Geology 100th Anniversary Volume, 485–522 (2005).

  33. Barick Gold Corporation; http://www.barrick.com.

  34. Mueller, A. G., Hall, G. C., Nemchin, A. A. & O'Brien, D. Chronology of the Pueblo Viejo epithermal gold–silver deposit, Dominican Republic: Formation in an Early Cretaceous intra-oceanic island arc and burial under ophiolite. Mineral. Depos. 43, 873–889 (2008).

    Article  Google Scholar 

  35. Kesler, S. E., Campbell, I. H., Smith, C. N., Hall, C. M. & Allen, C. M. Age of the Pueblo Viejo gold–silver deposit and its significance to models for high-sulfidation epithermal mineralization. Econ. Geol. 100, 253–272 (2005).

    Google Scholar 

  36. Sillitoe, R. H., Hall, D. J., Redwood, S. D. & Waddell, A. H. Pueblo Viejo high-sulfidation epithermal gold-silver deposit, Dominican Republic: A new model of formation beneath barren limestone cover. Econ. Geol. 101, 1427–1435 (2006).

    Article  Google Scholar 

  37. Bissig, T., Clark, A. H., Lee, J. K. W. & Hodgson, C. J. Miocene landscape evolution and geomorphologic controls on epithermal processes in the El Indio-Pascua Au–Ag–Cu belt, Chile and Argentina. Econ. Geol. 97, 971–996 (2002).

    Article  Google Scholar 

  38. Bissig, T., Clark, A. H., Lee, J. K. W. & von Quadt, A., Petrogenetic and metallogenetic response to Miocene slab flattening: New constraints from the El Indio-Pascua Au–Ag–Cu belt, Chile/Argentina. Mineral. Depos. 38, 844–862 (2003).

    Article  Google Scholar 

  39. Oyarzun, R., Lillo, J., Oyarzun, J. & Higueras, P. Plate interactions, evolving magmatic styles, and inheritance of structural paths: Development of the gold-rich, Miocene El Indio epithermal belt, Northern Chile. Int. Geol. Rev. 49, 844–853 (2007).

    Article  Google Scholar 

  40. Richards, J. P., Bray, C. J., Channer, D. M. DeR. & Spooner, E. T. C. Fluid chemistry and processes at the Porgera gold deposit, Papua New Guinea. Mineral. Depos. 32, 119–132 (1997).

    Article  Google Scholar 

  41. Richards, J. P., Chappell, B. W. & McCulloch, M. T. Intraplate-type magmatism in a continent-island-arc collision zone: Porgera intrusive complex, Papua New Guinea. Geology 18, 958–961 (1990).

    Article  Google Scholar 

  42. Richards, J. P. & Kerrich, R. The Porgera gold mine, Papua New Guinea: Magmatic-hydrothermal to epithermal evolution of an alkalic-type precious metal deposit. Econ. Geol. 88, 1017–1052 (1993).

    Article  Google Scholar 

  43. Lowell, J. D. & Guilbert, J. M. Lateral and vertical alteration-mineralization zoning in porphyry copper ore deposits. Econ. Geol. 65, 373–408 (1970).

    Article  Google Scholar 

  44. Richards, J. P. Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation. Econ. Geol. 98, 1515–1533 (2003).

    Article  Google Scholar 

  45. Cooke, D. R., Hollings, P. & Walshe, J. L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ. Geol. 100, 801–818 (2005).

    Article  Google Scholar 

  46. Richards, J. P. in Super Porphyry Copper and Gold Deposits: A Global Perspective Vol. 1 (ed. Porter, T. M.) 7–25 (Porter Geoscience Consulting Publishing, 2005).

    Google Scholar 

  47. Richards, J. P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 40, 1–26 (2011).

    Article  Google Scholar 

  48. Seedorff, E. et al. Porphyry deposits: Characteristics and origin of hypogene features. Economic Geology 100th Anniversary Volume 251–298 (2005).

  49. Gill, J. B. Orogenic Andesites and Plate Tectonics (Springer, 1981).

    Book  Google Scholar 

  50. Cooke, D. R. & Simmons, S. F. Characteristics and genesis of epithermal gold deposits. Rev. Econ. Geol. 13, 221–244 (2000).

    Google Scholar 

  51. Simmons, S. F., White, N. C. & John, D. A. Geological characteristics of epithermal precious and base metal deposits. Economic Geology 100th Anniversary Volume, 485–522 (2005).

  52. Einaudi, M. T., Hedenquist, J. W. & Inan, E. E. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Soc. Econ. Geol. Spec. Publ. 10, 285–313 (2003).

    Google Scholar 

  53. Sillitoe, R. H. & Hedenquist, J. W. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Soc. Econ. Geol. Spec. Publ. 10, 315–343 (2003).

    Google Scholar 

  54. Richards, J. P. in Magmas, Fluids, and Ore Deposits (ed. Thompson, J. F. H.) 367–400 (Mineral. Assoc. Canada, 1995).

    Google Scholar 

  55. Jensen, E. P. & Barton, M. D. Gold deposits related to alkaline magmatism. Rev. Econ. Geol. 13, 279–314 (2000).

    Google Scholar 

Download references

Acknowledgements

I acknowledge the support of a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy P. Richards.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3294 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, J. Giant ore deposits formed by optimal alignments and combinations of geological processes. Nature Geosci 6, 911–916 (2013). https://doi.org/10.1038/ngeo1920

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing