Stability of the West Antarctic ice sheet in a warming world

Journal name:
Nature Geoscience
Volume:
4,
Pages:
506–513
Year published:
DOI:
doi:10.1038/ngeo1194
Published online

Abstract

Ice sheets are expected to shrink in size as the world warms, which in turn will raise sea level. The West Antarctic ice sheet is of particular concern, because it was probably much smaller at times during the past million years when temperatures were comparable to levels that might be reached or exceeded within the next few centuries. Much of the grounded ice in West Antarctica lies on a bed that deepens inland and extends well below sea level. Oceanic and atmospheric warming threaten to reduce or eliminate the floating ice shelves that buttress the ice sheet at present. Loss of the ice shelves would accelerate the flow of non-floating ice near the coast. Because of the slope of the sea bed, the consequent thinning could ultimately float much of the ice sheet's interior. In this scenario, global sea level would rise by more than three metres, at an unknown rate. Simplified analyses suggest that much of the ice sheet will survive beyond this century. We do not know how likely or inevitable eventual collapse of the West Antarctic ice sheet is at this stage, but the possibility cannot be discarded. For confident projections of the fate of the ice sheet and the rate of any collapse, further work including the development of well-validated physical models will be required.

At a glance

Figures

  1. Rates of elevation change along the Amundsen Coast of West Antarctica as determined from ICESAT by Pritchard et al..
    Figure 1: Rates of elevation change along the Amundsen Coast of West Antarctica as determined from ICESAT by Pritchard et al.9.

    The results are gridded from individual tracks such as those shown in the inset for PIG. Figure reproduced from ref. 9, © 2009 NPG.

  2. Map of Antarctica with red-brown colours indicating the bed elevation of the marine portions of the WAIS.
    Figure 2: Map of Antarctica with red-brown colours indicating the bed elevation of the marine portions of the WAIS14.

    The gray shaded regions show the East Antarctic ice sheet and the portions of West Antarctica likely to exist following a collapse of the marine ice sheet. Blue shaded regions show areas of East Antarctica where the bed is more than 200 m below sea level. Figure reproduced with permission from ref. 14, © 2009 AAAS.

  3. MODIS image (centre panel) with history of retreat leading up to the collapse of the Larsen B ice shelf.
    Figure 3: MODIS image (centre panel) with history of retreat leading up to the collapse of the Larsen B ice shelf98.

    The side plots show the flow speed before and after the collapse. Note there was little or no speedup on Flask and Leppard glaciers, which flow into the remnant ice shelf and remain well buttressed. Figure reproduced with permission from ref. 98, © 2004 AGU.

References

  1. Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci. 1, 106110 (2008).
  2. Shepherd, A. & Wingham, D. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 315, 15291532 (2007).
  3. Velicogna, I. & Wahr, J. Measurements of time-variable gravity show mass loss in Antarctica. Science 311, 17541756 (2006).
  4. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011).
  5. Mercer, J. H. Antarctic ice and Sangamon sea level rise. IAHS Publ. 179, 217225 (1968).
  6. Helsen, M. M. et al. Elevation changes in Antarctica mainly determined by accumulation variability. Science 320, 16261629 (2008).
  7. Joughin, I. & Bamber, J. L. Thickening of the ice stream catchments feeding the Filchner-Ronne Ice Shelf, Antarctica. Geophys. Res. Lett. 32, L17503 (2005).
  8. Joughin, I. & Tulaczyk, S. Positive mass balance of the Ross Ice Streams, West Antarctica. Science 295, 476480 (2002).
  9. Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971975 (2009).
  10. Hughes, T. J. The weak underbelley of the West Antarctic Ice-Sheet. J. Glaciol. 27, 518525 (1981).
  11. Wilson, G. S., Harwood, D. M., Askin, R. A. & Levy, R. H. Late Neogene Sirius Group strata in Reedy Valley, Antarctica: A multiple-resolution record of climate, ice-sheet and sea-level events. J. Glaciol. 44, 437447 (1998).
  12. Mercer, J. H. Antarctic ice and interglacial high sea levels. Science 168, 16051606 (1970).
  13. Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. & Oppenheimer, M. Probabilistic assessment of sea level during the last interglacial stage. Nature 462, 863867 (2009).
  14. Bamber, J. L., Riva, R. E. M., Vermeersen, B. L. A. & LeBrocq, A. M. Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet. Science 324, 901903 (2009).
  15. Scherer, R. P. et al. Pleistocene collapse of the West Antarctic Ice Sheet. Science 281, 8285 (1998).
  16. Barnes, D. K. A. & Hillenbrand, C. D. Faunal evidence for a late quaternary trans-Antarctic seaway. Glob. Change Biol. 16, 32973303 (2010).
  17. Naish, T. et al. Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations. Nature 458, 322328 (2009).
  18. Pollard, D. & DeConto, R. M. Modelling West Antarctic Ice Sheet growth and collapse through the past five million years. Nature 458, 329332 (2009).
  19. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).
  20. Dowdeswell, J. A., Ottesen, D., Evans, J., Cofaigh, C. O. & Anderson, J. B. Submarine glacial landforms and rates of ice-stream collapse. Geology 36, 819822 (2008).
  21. Mercer, J. H. West Antarctic Ice Sheet and CO2 greenhouse effect - Threat of disaster. Nature 271, 321325 (1978).
  22. Vaughan, D. G. & Spouge, J. R. Risk estimation of collapse of the West Antarctic Ice Sheet. Climatic Change 52, 6591 (2002).
  23. Conway, H., Hall, B. L., Denton, G. H., Gades, A. M. & Waddington, E. D. Past and future grounding-line retreat of the West Antarctic Ice Sheet. Science 286, 280283 (1999).
  24. Stone, J. O. et al. Holocene deglaciation of Marie Byrd Land, West Antarctica. Science 299, 99102 (2003).
  25. Retzlaff, R. & Bentley, C. R. Timing of stagnation of Ice Stream-C, West Antarctica, from short-pulse radar studies of buried surface crevasses. J. Glaciol. 39, 553561 (1993).
  26. Smith, B. E., Lord, N. E. & Bentley, C. R. Crevasse ages on the northern margin of Ice stream C, West Antarctica. Ann. Glaciol. 34, 209216 (2002).
  27. Nereson, N. A. & Raymond, C. F. The elevation history of ice streams and the spatial accumulation pattern along the Siple Coast of West Antarctica inferred from ground-based radar data from three inter-ice- stream ridges. J. Glaciol. 47, 303313 (2001).
  28. Conway, H. et al. Switch of flow direction in an Antarctic ice stream. Nature 419, 465467 (2002).
  29. Joughin, I. et al. Continued deceleration of Whillans Ice Stream, West Antarctica. 32, L22501 (2005).
  30. Fahnestock, M. A., Scambos, T. A., Bindschadler, R. A. & Kvaran, G. A millennium of variable ice flow recorded by the Ross Ice Shelf, Antarctica. J. Glaciol. 46, 652664 (2000).
  31. Hulbe, C. L. & Fahnestock, M. A. West Antarctic ice-stream discharge variability: Mechanism, controls and pattern of grounding-line retreat. J. Glaciol. 50, 471484 (2004).
  32. Hulbe, C. & Fahnestock, M. Century-scale discharge stagnation and reactivation of the Ross ice streams, West Antarctica. J. Geophys. Res.-Earth 112, F03S27 (2007).
  33. Hughes, T. Is the West Antarctic Ice-Sheet disintegrating. J. Geophys. Res. 78, 78847910 (1973).
  34. Blankenship, D. D., Bentley, C. R., Rooney, S. T. & Alley, R. B. Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature 322, 5457 (1986).
  35. Alley, R. B., Blankenship, D. D., Bentley, C. R. & Rooney, S. T. Deformation of till beneath Ice Stream-B, West Antarctica. Nature 322, 5759 (1986).
  36. Tulaczyk, S., Kamb, W. B. & Engelhardt, H. F. Basal mechanics of Ice Stream B, West Antarctica 1. Till mechanics. J. Geophys. Res.-Solid 105, 463481 (2000).
  37. Kamb, B. Rheological nonlinearity and flow instability in the deforming bed mechanism of ice stream motion. J. Geophys. Res.-Solid 96, 1658516595 (1991).
  38. Joughin, I., MacAyeal, D. R. & Tulaczyk, S. Basal shear stress of the Ross ice streams from control method inversions. J. Geophys. Res. 109, B09405 (2004).
  39. MacAyeal, D. R., Bindschadler, R. A. & Scambos, T. A. Basal friction of Ice-Stream-E, West Antarctica. J. Glaciol. 41, 247262 (1995).
  40. Whillans, I. M. & van der Veen, C. J. Transmission of stress between an ice stream and interstream ridge. J. Glaciol. 47, 433440 (2001).
  41. Alley, R. B. In search of ice-stream sticky spots. J. Glaciol. 39, 447454 (1993).
  42. Raymond, C. Shear margins in glaciers and ice sheets. J. Glaciol. 42, 90102 (1996).
  43. Jacobson, H. P. & Raymond, C. E. Thermal effects on the location of ice stream margins. J. Geophys. Res. 103, 1211112122 (1998).
  44. Tulaczyk, S., Kamb, W. B. & Engelhardt, H. F. Basal mechanics of Ice Stream B, West Antarctica 2. Undrained plastic bed model. J. Geophys. Res.-Solid 105, 483494 (2000).
  45. Bougamont, M., Tulaczyk, S. & Joughin, I. Response of subglacial sediments to basal freeze-on - 2. Application in numerical modeling of the recent stoppage of Ice Stream C, West Antarctica. J. Geophys. Res.-Solid 108, 2223 (2003).
  46. Raymond, C. F. Energy balance of ice streams. J. Glaciol. 46, 665674 (2000).
  47. MacAyeal, D. R. A low-order model of the Heinrich event cycle. Paleoceanography 8, 767773 (1993).
  48. Hollin, J. T. On the glacial history of Antarctica. J. Glaciol. 4, 172195 (1962).
  49. Denton, G. H. & Hughes, T. J. Global ice-sheet system interlocked by sea-level. Quat. Res. 26, 326 (1986).
  50. Thomas, R. H. & Bentley, C. R. Model for Holocene retreat of West Antarctic Ice Sheet. Quat. Res. 10, 150170 (1978).
  51. Alley, R. B., Anandakrishnan, S., Dupont, T. K., Parizek, B. R. & Pollard, D. Effect of sedimentation on ice-sheet grounding-line stability. Science 315, 18381841 (2007).
  52. Gomez, N., Mitrovica, J. X., Huybers, P. & Clark, P. U. Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nature Geosci. 3, 850853 (2010).
  53. Fyke, J. G., Carter, L., Mackintosh, A., Weaver, A. J. & Meissner, K. J. Surface melting over ice shelves and ice sheets as assessed from modeled surface air temperatures. J. Climate 23, 19291936 (2010).
  54. Jacobs, S. S., Helmer, H. H., Doake, C. S. M., Jenkins, A. & Frolich, R. M. Melting of ice shelves and the mass balance of Antarctica. J. Glaciol. 38, 375387 (1992).
  55. Thomas, R. H., Sanderson, T. J. O. & Rose, K. E. Effect of climatic warming on the West Antarctic Ice Sheet. Nature 277, 355358 (1979).
  56. Dupont, T. K. & Alley, R. B. Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys. Res. Lett. 32, L04503 (2005).
  57. Nicholls, K. W., Osterhus, S., Makinson, K., Gammelsrod, T. & Fahrbach, E. Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review. Rev. Geophys. 47, RG3003 (2009).
  58. Thyssen, F., Bombosch, A. & Sandhäger, H. Elevation, ice thickness and structure mark maps of the central part of Filchner-Ronne Ice Shelf. Polarforschung 62, 1726 (1993).
  59. Jenkins, A. & Doake, C. S. M. Ice-ocean interaction on Ronne Ice Shelf, Antarctica. J. Geophys. Res.-Oceans 96, 791813 (1991).
  60. Joughin, I. & Padman, L. Melting and freezing beneath Filchner-Ronne Ice Shelf, Antarctica. Geophys. Res. Lett. 30, 1477 (2003).
  61. Horgan, H. J., Walker, R. T., Anandakrishnan, S. & Alley, R. B. Surface elevation changes at the front of the Ross Ice Shelf: Implications for basal melting. J. Geophys. Res. 116, C02005 (2011).
  62. Rignot, E. & Jacobs, S. S. Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science 296, 20202023 (2002).
  63. Nicholls, K. W. Predicted reduction in basal melt rates of an Antarctic ice shelf in a warmer climate. Nature 388, 460462 (1997).
  64. Walker, R. T., Dupont, T. K., Parizek, B. R. & Alley, R. B. Effects of basal-melting distribution on the retreat of ice-shelf grounding lines. Geophys. Res. Lett. 35, L17503 (2008).
  65. Payne, A. J. et al. Numerical modeling of ocean-ice interactions under Pine Island Bay's ice shelf. J. Geophys. Res.-Oceans 112, C10019 (2007).
  66. Joughin, I., Smith, B. E. & Holland, D. M. Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophys. Res. Lett. 37, L20502 (2010).
  67. Jacobs, S. S., Jenkins, A., Giulivi, C. F. & Dutrieux, P. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geosci. doi:10.1038/ngeo1188 (2011).
  68. Thoma, M., Jenkins, A., Holland, D. & Jacobs, S. Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. 35, L18602 (2008).
  69. Shepherd, A., Wingham, D. & Rignot, E. Warm ocean is eroding West Antarctic Ice Sheet. Geophys. Res. Lett. 31, L23402 (2004).
  70. Rignot, E. Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data. Geophys. Res. Lett. 35, L12505 (2008).
  71. Jacobs, S. S., Giulivi, C. F. & Mele, P. A. Freshening of the Ross Sea during the late 20th century. Science 297, 386389 (2002).
  72. Yin, J. et al. Different magnitudes of projected subsurface ocean warming around Greenland and Antarctica. Nature Geosci. doi:10.1038/ngeo1189 (2011).
  73. Gillett, N. P., Arora, V. K., Zickfeld, K., Marshall, S. J. & Merryfield, J. Ongoing climate change following a complete cessation of carbon dioxide emissions. Nature Geosci. 4, 8387 (2011).
  74. Sen Gupta, A. et al. Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AR4 climate models. J. Climate 22, 30473078 (2009).
  75. Hattermann, T. & Levermann, A. Response of Southern Ocean circulation to global warming may enhance basal ice shelf melting around Antarctica. Clim. Dyn. 35, 741756 (2010).
  76. Thomas, R., Rignot, E., Kanagaratnam, P., Krabill, W. & Casassa, G. Force-perturbation analysis of Pine Island Glacier, Antarctica, suggests cause for recent acceleration. Ann Glaciol. 39, 133138 (2004).
  77. Schoof, C. Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J. Geophys. Res.-Earth 112, F03S28 (2007).
  78. Rignot, E. J. Fast recession of a West Antarctic glacier. Science 281, 549551 (1998).
  79. Payne, A. J., Vieli, A., Shepherd, A. P., Wingham, D. J. & Rignot, E. Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys. Res. Lett. 31, L23401 (2004).
  80. Corr, H. F. J., Doake, C. S. M., Jenkins, A. & Vaughan, D. G. Investigations of an “ice plain” in the mouth of Pine Island Glacier, Antarctica. J. Glaciol. 47, 5157 (2001).
  81. Jenkins, A. et al. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geosci. 3, 468472 (2010).
  82. Shepherd, A., Wingham, D. J. & Mansley, J. A. D. Inland thinning of the Amundsen Sea sector, West Antarctica. Geophys. Res. Lett. 29, 1364 (2002).
  83. Wingham, D. J., Wallis, D. W. & Shepherd, A. Spatial and temporal evolution of Pine Island Glacier thinning, 1995–2006. Geophys. Res. Lett. 36, L17501 (2009).
  84. Vaughan, D. G. et al. New boundary conditions for the West Antarctic Ice sheet: Subglacial topography beneath Pine Island Glacier. Geophys. Res. Lett. 33, L09501 (2006).
  85. Holt, J. W. et al. New boundary conditions for the West Antarctic Ice Sheet: Subglacial topography of the Thwaites and Smith glacier catchments. Geophys. Res. Lett. 33, L09502 (2006).
  86. Cook, A. J. & Vaughan, D. G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 7798 (2010).
  87. Vaughan, D. G. & Doake, C. S. M. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379, 328331 (1996).
  88. Doake, C. S. M., Corr, H. F. J., Rott, H., Skvarca, P. & Young, N. W. Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature 391, 778780 (1998).
  89. Rott, H., Skvarca, P. & Nagler, T. Rapid collapse of northern Larsen Ice Shelf, Antarctica. Science 271, 788792 (1996).
  90. MacAyeal, D. R., Scambos, T. A., Hulbe, C. L. & Fahnestock, M. A. Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism. J. Glaciol. 49, 2236 (2003).
  91. Scambos, T. A., Hulbe, C., Fahnestock, M. & Bohlander, J. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol. 46, 516530 (2000).
  92. Doake, C. S. M. & Vaughan, D. G. Rapid disintegration of the Wordie Ice Shelf in response to atmospheric warming. Nature 350, 328330 (1991).
  93. Weertman, J. Can a water filled crevasse reach the bottom surface of a glacier? IAHS Publ. 95, 139145 (1973).
  94. Das, S. B. et al. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science 320, 778781 (2008).
  95. Alley, R. B., Dupont, T. K., Parizek, B. R. & Anandakrishnan, S. Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights. Ann. Glaciol. 40, 814 (2005).
  96. Shepherd, A., Wingham, D., Payne, T. & Skvarca, P. Larsen ice shelf has progressively thinned. Science 302, 856859 (2003).
  97. Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B Ice Shelf. Geophys. Res. Lett. 31, L18401 (2004).
  98. Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, L18402 (2004).
  99. Liu, H. X., Wang, L. & Jezek, K. C. Spatiotemporal variations of snowmelt in Antarctica derived from satellite scanning multichannel microwave radiometer and Special Sensor Microwave Imager data (1978–2004). J. Geophys. Res.-Earth 111, F01003 (2006).
  100. Comiso, J. C. Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Clim. 13, 16741696 (2000).
  101. Arthern, R. J., Winebrenner, D. P. & Vaughan, D. G. Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J. Geophys. Res.-Atmos. 111, D06107 (2006).
  102. Alley, R. B., Clark, P. U., Huybrechts, P. & Joughin, I. Ice-sheet and sea-level changes. Science 310, 456460 (2005).
  103. Pfeffer, W. T., Harper, J. T. & O'Neel, S. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321, 13401343 (2008).
  104. Scambos, T. A., Haran, T. M., Fahnestock, M. A., Painter, T. H. & Bohlander, J. MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size. Remote Sens. Environ. 111, 242257 (2007).
  105. Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 311 (1974).

Download references

Author information

Affiliations

  1. Applied Physics Laboratory, Polar Science Center, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105-6698, USA

    • Ian Joughin
  2. Department of Geosciences, and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, Pennsylvania 16802, USA

    • Richard B. Alley

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Additional data