Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dust- and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium

Abstract

Trichodesmium, a filamentous dinitrogen-fixing cyanobacterium, forms extensive blooms in nutrient-poor tropical and subtropical ocean waters. These cyano-bacteria contribute significantly to biological fixation of nitrogen from the atmosphere in these waters, and thereby fuel primary production and influence nutrient flow and the cycling of organic and inorganic matter1,2. Trichodesmium blooms require large quantities of iron, which is partly supplied by the influx of wind-blown dust3. However, the processes and mechanisms associated with dust acquisition are poorly understood3,4,5,6. Here, we incubate natural populations and laboratory cultures of Trichodesmium with isotopically labelled iron oxides and desert dust, to determine how these cyanobacteria collect, process and use particulate iron. We show that, like most phytoplankton, Trichodesmium acquires only dissolved iron. However, unlike other studied phytoplankton, Trichodesmium accelerates the rate of iron dissolution from oxides and dust, through as yet unspecified cell-surface processes, and thereby increases cellular iron uptake rates. We show that natural puff (ball-shaped) colonies of Trichodesmium are particularly effective at dissolving dust and oxides, which we attribute to efficient dust trapping in their intricate colony morphology, followed by active shuttling and packaging of the dust within the colony core. We suggest that colony formation in Trichodesmium is an adaptive strategy that enhances iron acquisition from particulate sources such as dust.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Iron acquisition by Trichodesmium IMS101 from 40 nM 55ferrihydrite.
Figure 2: Active enhancement of ferrihydrite and dust dissolution by Trichodesmium.
Figure 3: Micrographs of natural Trichodesmium colonies mixed with dust showing efficient dust retention and active centring of the dust in the colony core.
Figure 4: Active centring of ferrihydrite and dust by puff-shaped natural Trichodesmium colonies.

Similar content being viewed by others

References

  1. Carpenter, E. J. & Capone, D. G. in Nitrogen in the Marine Environment 2nd edn (eds Capone, D. G., Bronk, D. A., Mulholland, M. & Carpenter, E. J.) 141–198 (Elsevier, 2008).

    Book  Google Scholar 

  2. LaRoche, J. & Breitbarth, E. Importance of the diazotrophs as a source of new nitrogen in the ocean. J. Sea Res. 53, 67–91 (2005).

    Article  Google Scholar 

  3. Boyd, P. W. & Elwood, M. J. The biogeochemical cycle of iron in the ocean. Nature Geosci. 3, 675–682 (2010).

    Article  Google Scholar 

  4. Boyd, P. W., Mackie, D. S. & Hunter, K. A. Aerosol iron deposition to the surface ocean—modes of iron supply and biological responses. Mar. Chem. 120, 128–143 (2010).

    Article  Google Scholar 

  5. Baker, A. R. & Croot, P. L. Atmospheric and marine controls on aerosol iron solubility in seawater. Mar. Chem. 120, 4–13 (2010).

    Article  Google Scholar 

  6. Breitbarth, E. et al. Iron biogeochemistry across marine systems—progress from the past decade. Biogeosciences 7, 1075–1097 (2010).

    Article  Google Scholar 

  7. Darwin, C. R. Journal of Researches into the Geology and Natural History of the Various Countries Visited by H.M.S. Beagle, Under the Command of Captain Fitzroy, R.N. from 1832 to 1836. (Henry Colburn, 1839).

  8. Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B. & Carpenter, E. J. Trichodesmium, a globally significant marine cyanobacterium. Science 276, 1221–1229 (1997).

    Article  Google Scholar 

  9. Paerl, H. W. in Growth and Reproductive Strategies of Freshwater Phytoplankton (ed. Sandgren, C. D.) 261–315 (Cambridge Univ. Press, 1988).

    Google Scholar 

  10. Villareal, T. A. & Carpenter, E. J. Diel buoyancy regulation in the marine diazotrophic cyanobacterium Trichodesmium thiebautii. Limnol. Oceanogr. 35, 1832–1837 (1990).

    Article  Google Scholar 

  11. Paerl, H. W. & Bebout, B. M. in Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs (eds Carpenter, E. J., Capone, D. G. & Rueter, J. G.) 43–60 (Kluwer Academic, 1992).

    Book  Google Scholar 

  12. Sunda, W. G. in The Biogeochemistry of Iron in Seawater (eds Hunter, K. A. & Turner, D. R.) 41–84 (Wiley, 2001).

    Google Scholar 

  13. Rueter, J. G., Hutchins, D. A., Smith, R. W. & Unsworth, N. L. in Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs (eds Carpenter, E. J., Capone, D. G. & Rueter, J. G.) 289–306 (Kluwer Academic, 1992).

    Book  Google Scholar 

  14. Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M. & Falkowski, P. G. Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 46, 1249–1260 (2001).

    Article  Google Scholar 

  15. Moore, M. C. et al. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nature Geosci. 2, 867–871 (2009).

    Article  Google Scholar 

  16. Lenes, J. M. et al. Saharan dust and phosphatic fidelity: A three-dimensional biogeochemical model of Trichodesmium as a nutrient source for red tides on the West Florida Shelf. Cont. Shelf Res. 28, 1091–1115 (2008).

    Article  Google Scholar 

  17. Fernández, A., Mouriño-Carballido, B., Bode, A., Varela, M. & Marañón, E. Latitudinal distribution of Trichodesmium spp. and N2 fixation in the Atlantic Ocean. Biogeosciences 7, 3167–3176 (2010).

    Article  Google Scholar 

  18. Rich, H. W. & Morel, F. M. M. Availability of well-defined iron colloids to the marine diatom Thalassiosira weissflogii. Limnol. Oceanogr. 35, 652–662 (1990).

    Article  Google Scholar 

  19. Rose, A. L. & Waite, T. D. Kinetics of hydrolysis and precipitation of ferric iron in seawater. Environ. Sci. Technol. 37, 3897–3903 (2003).

    Article  Google Scholar 

  20. Castruita, M., Elmegreen, L. A., Shaked, Y., Stiefel, E. I. & Morel, F. M. M. Comparison of the kinetics of iron release from a marine (Trichodesmium erythraeum) Dps protein and mammalian ferritin in the presence and absence of ligands. J. Inor. Biochem. 101, 1686–1691 (2007).

    Article  Google Scholar 

  21. Halfen, L. N. & Castenholz, R. W. Gliding motility in the blue–green alga Oscillatoria princeps. J. Phycol. 7, 133–145 (1971).

    Article  Google Scholar 

  22. Pate, J. & Chang, L-Y. Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes. Curr. Microbiol. 2, 59–64 (1979).

    Article  Google Scholar 

  23. Carlton, R. G. & Paerl, H. W. Oxygen-induces changes in morphology of aggregates of Aphanizomenon flos-aquae (Cyanophyceae): Implications for nitrogen fixation potentials. J. Phycol. 25, 326–333 (1989).

    Article  Google Scholar 

  24. Kraemer, S. M., Butler, A., Borer, P. & Cervini-Silva, J. Siderophores and the dissolution of iron-bearing minerals in marine systems. Rev. Mineral. Geochem. 59, 53–84 (2005).

    Article  Google Scholar 

  25. Shaked, Y., Kustka, A. B. & Morel, F. M. M. A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol. Oceanogr. 50, 872–882 (2005).

    Article  Google Scholar 

  26. Barbeau, K. Photochemistry of organic iron(III) complexing ligands in oceanic systems. Photochem. Photobiol. 82, 1505–1516 (2006).

    Article  Google Scholar 

  27. Chen, Y. B., Zehr, J. P. & Mellon, M. Growth and nitrogen fixation of the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. IMS 101 in defined media: Evidence for a circadian rhythm. J. Phycol. 32, 916–923 (1996).

    Article  Google Scholar 

  28. Erel, Y., Dayan, U., Rabi, R., Rudich, Y. & Stein, M. Trans boundary transport of pollutants by atmospheric mineral dust. Environ. Sci. Technol. 40, 2996–3005 (2006).

    Article  Google Scholar 

  29. Hudson, R. J. M. & Morel, F. M. M. Distinguishing between extracellular and intracellular iron in marine phytoplankton. Limnol. Oceanogr. 34, 1113–1120 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank O. Levitan and D. Spungin for help with Trichodesmium culturing, H. Lis for help with uptake experiments, and V. Farstey, M. Dray and I. Avishay for help with natural Trichodesmium collection. This work was supported in part by the Israel Science Foundation grant 933/07 and the Israel USA Binational Science Foundation grant 2008097 awarded to Y.S. and BMBF-MOST GR1950 to I.B-F. This work is in partial fulfilment of the requirements for a MSc thesis to M.R. from Bar Ilan University.

Author information

Authors and Affiliations

Authors

Contributions

The work presented in this paper is a joint effort of all authors. Y.S. conceived the study; Y.S., I.B-F. and M.R. planned and designed the experiments; M.R. carried out the experiments and analysed the data; all authors wrote the paper.

Corresponding author

Correspondence to Yeala Shaked.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 517 kb)

Supplementary Movies

Supplementary Information (WMV 10383 kb)

Supplementary Movies

Supplementary Information (WMV 7095 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, M., Berman-Frank, I. & Shaked, Y. Dust- and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium. Nature Geosci 4, 529–534 (2011). https://doi.org/10.1038/ngeo1181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1181

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology