Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Possible animal-body fossils in pre-Marinoan limestones from South Australia

Subjects

Abstract

The Neoproterozoic era was punctuated by the Sturtian (about 710 million years ago) and Marinoan (about 635 million years ago) intervals of glaciation. In South Australia, the rocks left behind by the glaciations are separated by a succession of limestones and shales, which were deposited at tropical latitudes. Here we describe millimetre- to centimetre-scale fossils from the Trezona Formation, which pre-dates the Marinoan glaciation. These weakly calcified fossils occur as anvil, wishbone, ring and perforated slab shapes and are contained within stromatolitic limestones. The Trezona Formation fossils pre-date the oldest known calcified fossils of this size by 90 million years, and cannot be separated from the surrounding calcite matrix or imaged by traditional X-ray-based tomographic scanning methods. Instead, we have traced cross-sections of individual fossils by serially grinding and scanning each sample at a resolution of 50.8 μm. From these images we constructed three-dimensional digital models of the fossils. Our reconstructions show a population of ellipsoidal organisms without symmetry and with a network of interior canals that lead to circular apertures on the fossil surface. We suggest that several characteristics of these reef-dwelling fossils are best explained if the fossils are identified as sponge-grade metazoans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geological and stratigraphic setting of the Trezona Formation.
Figure 2: Diverse morphology of the Trezona Formation fossils.
Figure 3: Three-dimensional reconstruction of the Trezona Formation fossils.

Similar content being viewed by others

References

  1. Preiss, W. in The Adelaide Geosyncline of South Australia, Late Proterozoic Stratigraphy, Sedimentation, Palaeontology and Tectonics Vol. 53 (ed. Preiss, W.) (Geological Survey of South Australia, 1987).

    Google Scholar 

  2. Fanning, C. M. Geological Society of America Abstracts with Programs Vol. 38, 115 (2006).

    Google Scholar 

  3. Schrag, D., Berner, R., Hoffman, P. & Halverson, G. On the initiation of a snowball Earth. Geochem. Geophys. Geosyst. 3, 1036 (2002).

    Article  Google Scholar 

  4. Pavlov, A., Hurtgen, M., Kasting, J. & Arthur, M. Methane-rich Proterozoic atmosphere. Geology 31, 87–90 (2003).

    Article  Google Scholar 

  5. Halverson, G., Maloof, A. & Hoffman, P. The Marinoan glaciation (Neoproterozoic) in northeast Svalbard. Basin Res. 16, 297–324 (2004).

    Article  Google Scholar 

  6. Halverson, G. et al. Toward a Neoproterozoic composite carbon-isotope record. Geol. Soc. Am. Bull. 117, 1181–1207 (2005).

    Article  Google Scholar 

  7. Condon, D. et al. U–Pb ages from the Neoproterozoic Doushantuo formation, China. Science 308, 95–98 (2005).

    Article  Google Scholar 

  8. Hoffmann, K-H., Condon, D., Bowring, S. & Crowley, J. A U–Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology 32, 817–820 (2004).

    Article  Google Scholar 

  9. Preiss, W. Palaeoecological interpretations of South Australian stromatolites. J. Geol. Soc. South Aust. 19, 501–532 (1973).

    Article  Google Scholar 

  10. Watters, W. & Grotzinger, J. Digital reconstruction of calcified early metazoans, terminal Proterozoic Nama Group, Namibia. Paleobiology 27, 159–171 (2001).

    Article  Google Scholar 

  11. Sutton, M., Briggs, D., Siveter, D. & Siveter, D. Methodologies for the visualization and reconstruction of three-dimensional fossils from the Silurian Herefordshire lagerstätte. Palaeontol. Electron. 4, 1–17 (2001).

    Google Scholar 

  12. Bentis, C., Kaufman, L. & Golubic, S. Endolithic fungi in reef-building corals (order: Scleractinia) are common, cosmopolitan, and potentially pathogenic. Biol. Bull. 198, 254–260 (2000).

    Article  Google Scholar 

  13. James, N. & Kobluk, D. The oldest macroborers: Lower Cambrian of Labrador. Science 197, 980–983 (1977).

    Article  Google Scholar 

  14. Riding, R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47 (suppl. 1), 179–214 (2000).

    Article  Google Scholar 

  15. Lawrence, J., Korber, D., Hoyle, B., Casterton, J. & Caldwell, J. Optical sectioning of microbial biofilms. J. Bacteriol. 173, 6558–6567 (1991).

    Article  Google Scholar 

  16. Matz, M., Frank, T., Marshall, J., Widder, E. & Johnsen, S. Giant deep-sea protist produces bilaterian-like traces. Curr. Biol. 18, 1849–1854 (2008a).

    Article  Google Scholar 

  17. Bengston, S. & Rasmussen, B. New and ancient trace makers. Science 323, 346–347 (2009).

    Article  Google Scholar 

  18. Brusca, R. & Brusca, G. Invertebrates 2nd edn (Sinauer Associates, 2003).

    Google Scholar 

  19. Tendal, O. A monograph of the Xenophyophoria (Rhizopodea, Protozoa). Galathea Rep. 12, 7–99 (1972).

    Google Scholar 

  20. Walter, M., Oehler, J. & Oehler, D. Megascopic algae 1,300 million years old from the Belt supergroup, Montana: A reinterpretation of Walcott’s Helminthoidichnites. J. Paleontol. 50, 872–881 (1976).

    Google Scholar 

  21. Han, T. & Runnegar, B. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee iron-formation, Michigan. Science 257, 232–235 (1992).

    Article  Google Scholar 

  22. Wray, J. Calcareous Algae (Elsevier, 1977).

    Google Scholar 

  23. Laporte, L. Codiacean algae and algal stromatolites of the Manlius Limestone (Devonian) of New York. J. Paleontol. 37, 643–647 (1963).

    Google Scholar 

  24. Mierzejewski, P. Ultrastructure, taxonomy and affinities of some Ordovician and Silurian microfossils. Palaeontol. Pol. 47, 129–220 (1986).

    Google Scholar 

  25. Riding, R. Solenopora is a chaetetid sponge, not an alga. Palaeontology 47, 117–122 (2004).

    Article  Google Scholar 

  26. Brooke, C. & Riding, R. Ordovician and Silurian coralline red algae. Lethaia 31, 185–195 (1998).

    Article  Google Scholar 

  27. Xiao, S. et al. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: Evidence for a post-Marinoan glaciation. Precambr. Res. 130, 1–26 (2004).

    Article  Google Scholar 

  28. Gehling, J. & Rigby, J. Long expected sponges from the Neoproterozoic Ediacaran Fauna of South Australia. J. Paleontol. 70, 185–195 (1996).

    Article  Google Scholar 

  29. Grant, S. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. Am. J. Sci. 290-A, 261–294 (1990).

    Google Scholar 

  30. Grotzinger, J., Watters, W. & Knoll, A. Calcified metazoans in thrombolite–stromatolite reefs of the terminal Proterozoioc Nama Group, Namibia. Paleobiology 26, 334–359 (2000).

    Article  Google Scholar 

  31. Toporski, J. et al. Morphologic and spectral investigation of exceptionally well-preserved bacterial biofilms from the Oligocene Enspel formation, Germany. Geochim. Cosmochim. Acta 66, 1773–1791 (2002).

    Article  Google Scholar 

  32. Briggs, D. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet. Sci. 31, 275–301 (2003).

    Article  Google Scholar 

  33. Bosak, T. & Newman, D. Microbial nucleation of calcium carbonate in the Precambrian. Geology 31, 577–580 (2003).

    Article  Google Scholar 

  34. Manuel, M. Phylogeny and evolution of calcareous sponges. Can. J. Zool. 84, 225–241 (2006).

    Article  Google Scholar 

  35. Peterson, K., Cotton, J., Gehling, J. & Pisani, D. The Ediacaran emergence of bilaterians: Congruence between the genetic and the geological fossil records. Phil. Trans. R. Soc. B 363, 1435–1443 (2008).

    Article  Google Scholar 

  36. Love, G. et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian. Nature 457, 718–721 (2009).

    Article  Google Scholar 

  37. Wallace, M. & Woon, E. Selwyn Symposium, Vol. Abstract 91 of Neoproterozoic Climates Origin of Early Life 17–21 (Geological Society of Australia Victoria Division, 2008).

    Google Scholar 

  38. Neuweiler, F., Turner, E. & Burdige, D. Early Neoproterozoic origin of the metazoan clade recorded in carbonate rock texture. Geology 37, 475–478 (2009).

    Article  Google Scholar 

  39. Xiao, S., Zhang, Y. & Knoll, A. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391, 553–558 (1998).

    Article  Google Scholar 

  40. Li, C., Chen, J. & Hua, T. Precambrian sponges with cellular structures. Science 279, 879–882 (1998).

    Article  Google Scholar 

  41. Bengston, S., Conway Morris, S., Cooper, B., Jell, P. & Runnegar, B. Early Cambrian fossils from South Australia. Mem. Assoc. Aust. Palaeontol. 1–364 (1990).

  42. Sperling, E., Robinson, J., Pisani, D. & Peterson, K. Where’s the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules. Geobiology 8, 24–36 (2010).

    Article  Google Scholar 

  43. Sperling, E., Pisani, D. & Peterson, K. in The Rise and Fall of the Ediacaran Biota, Vol. 286 (eds Vickers-Rich, P. & Komarower, P.) 355–368 (Geol. Soc. Lond. Spec. Publ., 2007).

    Google Scholar 

  44. Xiao, S. & Laflamme, M. On the eve of animal radiation: Phylogeny, ecology, and evolution of the Ediacara biota. Trends Ecol. Evol. 24, 31–40 (2009).

    Article  Google Scholar 

  45. Swanson-Hysell, N. et al. Cryogenian glaciation and the onset of carbon-isotope decoupling. Science 328, 608–611 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

W. Watters provided us with example imagery, and, along with J. Hawthorne, gave us helpful Matlab advice. B. Evans allowed us to use his precision grinding machine at MIT, E. Feldman provided useful advice about machine design and machine code and S. Myneni helped us with the ATR-FTIR spectroscopy. We would like to thank B. E. Girit, W. A. Rozen, S. Briedfjord and A. Lukyanov of Situ Studio. B. Dyer, J. Strauss, N. Swanson-Hysell and N. Xu assisted with field work. S. Bowring, T. Duffy, J. Grotzinger, A. Knoll, M. Manuel, S. Porter, E. Sperling, G. Subsol and S. Xiao provided stimulating discussion. Flinders National Park and numerous pastoralists graciously allowed us to conduct field work on their land. The research was financially supported by NSF-EAR0842946 to A.C.M. and NSF-DMR-0819860 to the Princeton Center for Complex Materials.

Author information

Authors and Affiliations

Authors

Contributions

A.C.M. and C.V.R. conducted the field work. C.V.R. carried out the serial grinding and imaging. R.B., B.M.S., C.V.R., C.C.C., F.J.S. and A.C.M. did the 3D modelling. G.R.P., N.Y., A.C.M. and C.V.R. did the E-SEM EDX analyses. C.V.R. conducted the ATR-FTIR spectroscopy. A.C.M. and D.H.E. wrote the paper.

Corresponding author

Correspondence to Adam C. Maloof.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6083 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maloof, A., Rose, C., Beach, R. et al. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geosci 3, 653–659 (2010). https://doi.org/10.1038/ngeo934

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo934

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing