Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Volcanism in the Solar System

Abstract

The myriad bodies that occur in the Solar System have a wide range of properties, from giant gaseous planets such as Jupiter to small, solid, rocky satellites such as our Moon. Exploration by spacecraft during the past four decades has shown that volcanism — an important mechanism by which internal heat is transported to the surface — is common on many of these bodies. There are many common traits; for example, relatively quiet eruptions of molten rock occur on such diverse bodies as the Earth, Mars and Jupiter's moon Io. The volcanic constructs produced, however, vary strikingly, and range from Olympus Mons on Mars, at over 20 km high, to relatively tiny cones on Earth no more than a few tens of metres high. The recognition of icy volcanoes spewing water or organic liquids on some of Saturn's moons constitutes one of the most exciting results to emerge from recent space missions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shield volcanoes.
Figure 2: Lava flows.
Figure 3: Explosive eruption styles as seen on Earth.
Figure 4: Pressure and explosive eruptions.
Figure 5: Explosive eruptions in a vacuum.

Similar content being viewed by others

References

  1. McKinnon, W. B., Kahnle, K. J., Ivanov, B. A. & Melosh, H. J. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Experiment. (eds Bougher, S. W., Hunten, D. M. & Phillips, R. J.) 1047–1086 (Univ. Arizona Press, 1997).

    Google Scholar 

  2. Neukum, G. et al. Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature 432, 971–979 (2004).

    Google Scholar 

  3. Johnson, T. V., Cook, A. F., Sagan, C. & Soderblom, L. A. Volcanic resurfacing rates and implications for volatiles on Io. Nature 280, 746–750 (1979).

    Google Scholar 

  4. Hiesinger, H., Head, J. W., Wolf, U., Jaumann, R. & Neukum, G. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Geophys. Res. 108, 5065 (2003).

    Google Scholar 

  5. Head, J. W. et al. Volcanism on Mercury: Evidence from the first MESSENGER flyby. Science 321, 69–72 (2008).

    Google Scholar 

  6. Breuer, D., Hauck, S. A., Buske, M., Pauer, M. & Spohn, T. Interior evolution of Mercury. Space Sci. Rev. 132, 229–260 (2007).

    Google Scholar 

  7. Stevenson, D. J. Styles of mantle convection and their influence on planetary evolution. C. R. Geosci. 335, 99–111 (2003).

    Google Scholar 

  8. Porco, C. C. et al. Cassini observes the active South Pole of Enceladus. Science 311, 1393–1401 (2006).

    Google Scholar 

  9. Lopes, R. M. C. et al. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper. Icarus 186, 395–412 (2007).

    Google Scholar 

  10. Mitri, G., Showman, A. P., Lunine, J. I. & Lopes, R. M. C. Resurfacing of Titan by ammonia–water cryomagma. Icarus 196, 216–224 (2008).

    Google Scholar 

  11. Burch, J. L. et al. Tethys and Dione as sources of outward-flowing plasma in Saturn's magnetosphere. Nature 447, 833–835 (2007).

    Google Scholar 

  12. Kargel, J. S. Cryovolcanism on the icy satellites. Earth Moon Planets 67, 101–113 (1995).

    Google Scholar 

  13. Fagents, S. A. Considerations for effusive cryovolcanism on Europa: the post-Galileo perspective. J. Geophys. Res. 108, 5139 (2003).

    Google Scholar 

  14. Showman, A. P., Mosqueira, I. & Head, J. W. On the resurfacing of Ganymede by liquid-water volcanism. Icarus 172, 625–640 (2004).

    Google Scholar 

  15. Ernst, R. E. & Desnoyers, D. W. Lessons from Venus for understanding mantle plumes on Earth. Phys. Earth Planet. Int. 146, 195–229 (2004).

    Google Scholar 

  16. Mège, D. & Masson, P. A plume tectonics model for the Tharsis province, Mars. Planet. Space Sci. 44, 1499–1546 (1996).

    Google Scholar 

  17. Schenk, P. M., Wilson, R. R. & Davies, A. G. Shield volcano topography and the rheology of lava flows on Io. Icarus 169, 98–110 (2004).

    Google Scholar 

  18. Head, J. W. & Wilson, L. Lunar mare volcanism: stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta 56, 2155–2175 (1992).

    Google Scholar 

  19. O'Neill, C., Jellinek, A. M. & Lenardic, A. Conditions for the onset of plate tectonics on terrestrial planets and moons. Earth Planet. Sci. Lett. 261, 20–32 (2007).

    Google Scholar 

  20. Shearer, C. K. et al. New views of the Moon. Rev. Mineral. Geochem. 60, 365–518 (2006).

    Google Scholar 

  21. Treiman, A. H., Gleason, J. D. & Bogard, D. D. The SNC meteorites are from Mars. Planet. Space Sci. 48, 1213–1230 (2000).

    Google Scholar 

  22. Bell, J. (ed.) The Martian Surface. Composition, Mineralogy, and Physical Properties (Cambridge Univ. Press, 2008).

    Google Scholar 

  23. Surkov, Y. A., Barsukov, V. L., Moskalyeva, L. P., Kharyukova, V. P. & Kemurdzhian, A. L. New data on the composition, structure, and properties of Venus rock obtained by Venera 13 and Venera 14. J. Geophys. Res. 89, B393–B402 (1984).

    Google Scholar 

  24. Solomon, S. C. et al. Return to Mercury: A global perspective on MESSENGER's first Mercury flyby. Science 321, 59–62 (2008).

    Google Scholar 

  25. Kesthelyi, L. et al. New estimates for Io eruption temperatures: Implications for the interior. Icarus 192, 491–502 (2007).

    Google Scholar 

  26. Taylor, G. J., Keil, K., McCoy, T., Haack, H. & Scott, E. R. D. Asteroid differentiation: Pyroclastic volcanism to magma oceans. Meteoritics 28, 34–52 (1993).

    Google Scholar 

  27. Fortes, A. D., Grindrod, P. M., Trickett, S. K. & Vocadlo, L. Ammonium sulfate on Titan: Possible origin and role in cryovolcanism. Icarus 188, 139–153 (2007).

    Google Scholar 

  28. Duxbury, N. S. & Brown, R. H. The role of an internal heat source for the eruptive plumes on Triton. Icarus 125, 83–93 (1997).

    Google Scholar 

  29. Roberts, J. H. & Nimmo, F. Near-surface heating on Enceladus and the south polar thermal anomaly. Geophys. Res. Lett. 35, L09201 (2008).

    Google Scholar 

  30. Elkins-Tanton, L. T., Smrekar, S. E., Hess, P. C. & Parmentier, E. M. Volcanism and volatile recycling on a one-plate planet: Applications to Venus. J. Geophys. Res. 112, E04S06 (2007).

    Google Scholar 

  31. Khan, A. & Connolly, J. A. D. Constraining the composition and thermal state of Mars from inversion of geophysical data. J. Geophys. Res. 113, E07003 (2008).

    Google Scholar 

  32. Rubin, A. M. Dikes vs. diapirs in viscoelastic rock. Earth Planet. Sci. Lett. 119, 641–659 (1993).

    Google Scholar 

  33. Mouginis-Mark, P. J. & Rowland, S. K. The geomorphology of planetary calderas. Geomorphology 37, 201–233 (2001).

    Google Scholar 

  34. Radebaugh, J. et al. Paterae on Io: A new type of volcanic caldera? J. Geophys. Res. 106, 33005–33020 (2001).

    Google Scholar 

  35. Kerber, L. et al. Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for mantle volatile abundances. Earth Planet. Sci. Lett. (in the press).

  36. Zuber, M. T. & Mouginis-Mark, P. J. Caldera subsidence and magma chamber depth of the Olympus Mons volcano, Mars. J. Geophys. Res. 97, 18295–18307 (1992).

    Google Scholar 

  37. Wilson, L. & Head, J. W. Mars: Review and analysis of volcanic eruption theory and relationships to observed landforms. Rev. Geophys. 32, 221–264 (1994).

    Google Scholar 

  38. Leone, G. & Wilson, L. The density structure of Io and the migration of magma through its lithosphere. J. Geophys. Res. 106, 32983–32995 (2001).

    Google Scholar 

  39. Stofan, E. R., Guest, J. E. & Copp, D. L. Development of large volcanoes on Venus: Constraints from Sif, Gula, and Kunapipi Montes. Icarus 152, 75–95 (2001).

    Google Scholar 

  40. Head, J. W. & Wilson, L. Magma reservoirs and neutral buoyancy zones on Venus: Implications for the formation and evolution of volcanic landforms. J. Geophys. Res. 97, 3877–3903 (1992).

    Google Scholar 

  41. Ernst, R. E., Grosfils, E. B. & Mege, D. Giant dike swarms: Earth, Venus and Mars. Annu. Rev. Earth Planet. Sci. 29, 489–534 (2001).

    Google Scholar 

  42. Wilson, L. & Head, J. W. Lateral dike injection and magma eruption around novae and coronae on Venus. 37th Lunar Planet. Sci. Conf. Abstr. 1125 (Lunar and Planetary Inst., Houston, 2006).

    Google Scholar 

  43. Wilson, L. & Head, J. W. Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: models and implications. J. Geophys. Res. 107, 5057 (2002).

    Google Scholar 

  44. Wilson, L. & Mouginis-Mark, P. J. Phreatomagmatic explosive activity at Hrad Vallis, Mars. J. Geophys. Res. 108, 5082 (2003).

    Google Scholar 

  45. Wilson, L. & Head, J. W. Evidence for a massive phreatomagmatic eruption in the initial stages of formation of the Mangala Valles outflow channel, Mars. Geophys. Res. Lett. 31, L15701 (2004).

    Google Scholar 

  46. Jaeger, W. L., Keszthelyi, L. P., McEwen, A. S., Dundas, C. M. & Russell, P. S. Athabasca Valles, Mars: A lava-draped channel system. Science 317, 1709–1711 (2007).

    Google Scholar 

  47. Burr, D. M., Wilson, L. & Bargery, A. S. in Megaflooding on Earth and Mars (Cambridge Univ. Press, 2009).

    Google Scholar 

  48. Mouginis-Mark, P. J. & Yoshioka, M. T. The long lava flows of Elysium Planita, Mars. J. Geophys. Res. 103, 19389–19400 (1998).

    Google Scholar 

  49. Davies, A. G. et al. The heartbeat of the volcano: The discovery of episodic activity at Prometheus on Io. Icarus 184, 460–477 (2006).

    Google Scholar 

  50. Glaze, L. S., Baloga, S. M. & Stofan, E. R. A methodology for constraining lava flow rheologies with MOLA. Icarus 165, 26–33 (2003).

    Google Scholar 

  51. Hulme, G. The interpretation of lava flow morphology. Geophys. J. Roy. Astron. Soc. 39, 361–383 (1974).

    Google Scholar 

  52. Self, S., Thordarson, T. & Keszthelyi, L. in Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.) 381–410 (Geophysical Monograph Series 100, American Geophysical Union, 1997).

    Google Scholar 

  53. Magee, K. P., Head, J. W., Ernst, R. E. & Buchan, K. L. Large flow fields on Venus: Implications for plumes, rift association and resurfacing. Geol. Soc. Am. Spec. Pap. 352, 81–101 (2001).

    Google Scholar 

  54. Byrnes, J. M. & Crown, D. A. Morphology, stratigraphy, and surface roughness properties of Venusian lava flow fields. J. Geophys. Res. 107, 5079 (2002).

    Google Scholar 

  55. Basilevskaya, E. A. & Neukum, G. The Olympus volcano on Mars: Geometry and characteristics of lava flows. Solar System Res. 40, 375–383 (2006).

    Google Scholar 

  56. Garry, W. B., Zimbelman, J. R. & Gregg, T. K. P. Morphology and emplacement of a long channelled lava flow near Ascraeus Mons Volcano, Mars. J. Geophys. Res. 112, E08007 (2007).

    Google Scholar 

  57. Hiesinger, H., Head, J. W. & Neukum, G. Young lava flows on the eastern flank of Ascraeus Mons: Rheological properties derived from High Resolution Stereo Camera (HRSC) images and Mars Orbiter Laser Altimeter (MOLA) data. J. Geophys. Res. 112, E05011 (2007).

    Google Scholar 

  58. Wilson, L. & Head, J. W. Volcanism on Mercury: A new model for the history of magma ascent and eruption. Geophys. Res. Lett. 35, L23205 (2008).

    Google Scholar 

  59. Hiesinger, H., Head, J. W., Wolf, U., Jaumann, R. & Neukum, G. Lunar mare basalt flow units: Thicknesses determined from crater size-frequency distributions. Geophys. Res. Lett. 29, 1248 (2002).

    Google Scholar 

  60. Wilson, L., Mouginis-Mark, P. J., Tyson, S., Mackown, J. & Garbeil, H. Fissure eruptions in Tharsis, Mars: Implications for eruption conditions and magma sources. J. Volcanol. Geotherm. Res. 10.1016/j.jvolgeores.2009.03.006 (2009).

  61. Williams, D. A., Davies, A. G., Keszthelyi, L. P. & Greeley, R. The summer 1997 eruption at Pillan Patera on Io: Implications for ultrabasic lava flow emplacement. J. Geophys. Res. 106, 33105–33119 (2001).

    Google Scholar 

  62. Davies, A. G. Volcanism on Io: Estimation of eruption parameters from Galileo NIMS data. J. Geophys. Res. 108, 5106 (2003).

    Google Scholar 

  63. Pavri, B., Head, J. W., Klose, K. B. & Wilson, L. Steep-sided domes on Venus: Characteristics, geologic setting, and eruption conditions from Magellan data. J. Geophys. Res. 97, 13445–13478 (1992).

    Google Scholar 

  64. Petford, N. Dyke widths and ascent rates of silicic magmas on Venus. Trans. R. Soc. Edinb. 91, 87–95 (2000).

    Google Scholar 

  65. Stofan, E. R., Anderson, S. W., Crown, D. A. & Plaut, J. J. Emplacement and composition of steep-sided domes on Venus. J. Geophys. Res. 105, 26757–26771 (2000).

    Google Scholar 

  66. Plaut, J. J., Anderson, S. W., Crown, D. A., Stofan, E. R. & van Zyl, J. J. The unique radar properties of silicic lava domes. J. Geophys. Res. 109, E03001 (2004).

    Google Scholar 

  67. Wilson, L. & Head, J. W. Lunar Gruithuisen and Mairan Domes: Rheology and mode of emplacement. J. Geophys. Res. 108, 5012 (2003).

    Google Scholar 

  68. Lena, R., Wohler, C., Bregante, M. T., Lazzarotti, P. & Lammel, S. Lunar domes in Mare Undarum: Spectral and morphometric properties, eruption conditions, and mode of emplacement. Planet. Space Sci. 56, 553–569 (2008).

    Google Scholar 

  69. Wilson, L. Relationships between pressure, volatile content and ejecta velocity in three types of volcanic explosion. J. Volcanol. Geotherm. Res. 8, 297–313 (1980).

    Google Scholar 

  70. Kieffer, S. W. Numerical-models of caldera-scale volcanic-eruptions on Earth, Venus, and Mars. Science 269, 1385–1391 (1995).

    Google Scholar 

  71. McSween, H. Y. et al. Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature 409, 487–490 (2001).

    Google Scholar 

  72. Saal, A. E. et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior. Nature 454, 192–195 (2008).

    Google Scholar 

  73. Nicholis, M. G. & Rutherford, M. J. Vapor/melt partioning behavior of S and Cl in a C–O gas mixture. 37th Lunar Planet. Sci. Conf. Abstr. 2061 (Lunar and Planetary Inst., Houston 2006).

  74. Solomon, S. C. Mercury: The enigmatic innermost planet. Earth Planet. Sci. Lett. 216, 441–455 (2003).

    Google Scholar 

  75. Cataldo, E., Wilson, L., Lane, S. & Gilbert, J. A model for large-scale volcanic plumes on Io: Implications for eruption rates and interactions between magmas and near-surface volatiles. J. Geophys. Res. 107, 5109 (2002).

    Google Scholar 

  76. Carr, M. H. & Head, J. W. Oceans on Mars: An assessment of the observational evidence and possible fate. J. Geophys. Res. 108, 5042 (2003).

    Google Scholar 

  77. Fagents, S. A. & Wilson, L. Explosive volcanism on Venus: Transient volcanic explosions as a mechanism for localized pyroclast dispersal. J. Geophys. Res. 100, 26327–26338 (1995).

    Google Scholar 

  78. Wilson, L. & Head, J. W. Explosive volcanic eruptions on Mars: Tephra and accretionary lapilli formation, dispersal and recognition in the geologic record. J. Volcanol. Geotherm. Res. 163, 83–97 (2007).

    Google Scholar 

  79. Wilson, L. & Head, J. W. Ascent and eruption of basaltic magma on the Earth and Moon. J. Geophys. Res. 86, 2971–3001 (1981).

    Google Scholar 

  80. Carter, L. M., Campbell, D. B. & Campbell, B. A. Volcanic deposits in shield fields and highland regions on Venus: Surface properties from radar polarimetry. J. Geophys. Res. 111, E06005 (2006).

    Google Scholar 

  81. Belyaev D. et al. First observations of SO2 above Venus' clouds by means of solar occultation in the infrared. J. Geophys. Res. 113, E00B25 (2008).

    Google Scholar 

  82. Mouginis-Mark, P. J., Wilson, L. & Head, J. W. Explosive volcanism on Hecates Tholus, Mars: Investigation of eruption conditions. J. Geophys. Res. 87, 9890–9904 (1982).

    Google Scholar 

  83. Brilliantov, N. V., Schmidt, J. & Spahn, F. Nucleation and growth of a solid phase in a gas expanding into vacuum. Int. J. Mod. Phys. C 18, 676–684 (2007).

    Google Scholar 

  84. Wilson, L. & Keil, K. The fate of pyroclasts produced in explosive eruptions on the asteroid 4 Vesta. Meteor. Planet. Sci. 32, 813–823 (1997).

    Google Scholar 

  85. Glaze, L. S. & Baloga, S. M. Stochastic-ballistic eruption plumes on Io. J. Geophys. Res. 105, 17579–17588 (2000).

    Google Scholar 

  86. Gaddis, L. R., Staid, M. I., Tyburczy, J. A., Hawke, B. R. & Petro, N. E. Compositional analyses of lunar pyroclastic deposits. Icarus 161, 262–280 (2008).

    Google Scholar 

  87. Shearer, C. K. & Borg, L. E. Big returns on small samples: Lessons learned from the analysis of small lunar samples and implications for the future scientific exploration of the Moon. Chem. Erde Geochem. 66, 163–185 (2006).

    Google Scholar 

  88. Elkins-Tanton, L. T., Chatterjee, N. & Grove, T. L. Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses. Meteor. Planet. Sci. 38, 515–527 (2003).

    Google Scholar 

  89. Wilson, L. & Head, J. W. Deep generation of magmatic gas on the Moon and implications for pyroclastic eruptions. Geophys. Res. Lett. 30, 1605 (2003).

    Google Scholar 

  90. Wilson, L. & Head, J. W. An integrated model of kimberlite ascent and eruption. Nature 447, 53–57 (2007).

    Google Scholar 

  91. Wilson, L. & Keil, K. Consequences of explosive eruptions on small Solar System bodies: The case of the missing basalts on the aubrite parent body. Earth Planet. Sci. Lett. 104, 505–512 (1991).

    Google Scholar 

  92. Wilson, L., Goodrich, C. A. & Van Orman, J. A. Thermal evolution and physics of melt extraction on the ureilite parent body. Geochim. Cosmochim. Acta 72, 6154–6176 (2008).

    Google Scholar 

  93. Glaze, L. S & Baloga, S. M. Volcanic plume heights on Mars: Limits of validity for convective models. J. Geophys. Res. 107, 5086 (2002).

    Google Scholar 

  94. Wilson, L. & Mouginis-Mark, P. J. Phreatomagmatic dike-cryosphere interactions as the origin of small ridges north of Olympus Mons, Mars. Icarus 165, 242–252 (2003).

    Google Scholar 

  95. Nimmo, F., Spencer, J. R., Pappalardo, R. T. & Mullen, M. E. Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447, 289–291 (2007).

    Google Scholar 

  96. Waite, J. H. et al. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422 (2006).

    Google Scholar 

  97. Matson, D. L., Castillo, J. C., Lunine, J. & Johnson, T. V. Enceladus' plume: Compositional evidence for a hot interior. Icarus 187, 569–573 (2007).

    Google Scholar 

  98. Kieffer, S. W. et al. A clathrate reservoir hypothesis for Enceladus' south polar plume. Science 314, 1764–1766 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, L. Volcanism in the Solar System. Nature Geosci 2, 389–397 (2009). https://doi.org/10.1038/ngeo529

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing