Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing

Abstract

The global temperature evolution during the Holocene is poorly known. Whereas proxy data suggest that warm conditions prevailed in the Early to mid-Holocene with subsequent cooling, model reconstructions show long-term warming associated with ice-sheet retreat and rising greenhouse gas concentrations. One reason for this contradiction could be the under-representation of indicators for winter climate in current global proxy reconstructions. Here we present records of carbon and oxygen isotopes from two U–Th-dated stalagmites from Kinderlinskaya Cave in the southern Ural Mountains that document warming during the winter season from 11,700 years ago to the present. Our data are in line with the global Holocene temperature evolution reconstructed from transient model simulations. We interpret Eurasian winter warming during the Holocene as a response to the retreat of Northern Hemisphere ice sheets until about 7,000 years ago, and to rising atmospheric greenhouse gas concentrations and winter insolation thereafter. We attribute negative δ18O anomalies 11,000 and 8,200 years ago to enhanced meltwater forcing of North Atlantic Ocean circulation, and a rapid decline of δ13C during the Early Holocene with stabilization after about 10,000 years ago to afforestation at our study site. We conclude that winter climate dynamics dominated Holocene temperature evolution in the continental interior of Eurasia, in contrast to regions more proximal to the ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results from stable-isotope and geochronological analysis.
Figure 2: Overview of Holocene climate dynamics related to KC δ18O.
Figure 3: Continental proxy records of Holocene warming.
Figure 4: Comparison of KC δ18O with model and proxy reconstructions of Holocene surface temperature.

Similar content being viewed by others

References

  1. Alder, J. R. & Hostetler, S. W. Global climate simulations at 3000-year intervals for the last 21,000 years with the GENMOM coupled atmosphere–ocean model. Clim. Past 11, 449–471 (2015).

    Article  Google Scholar 

  2. Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).

    Article  Google Scholar 

  3. Timm, O. & Timmermann, A. Simulation of the last 21 000 years using accelerated transient boundary conditions. J. Clim. 20, 4377–4401 (2007).

    Article  Google Scholar 

  4. Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

    Article  Google Scholar 

  5. Mayewski, P. A. et al. Holocene climate variability. Quat. Res. 62, 243–255 (2004).

    Article  Google Scholar 

  6. Sejrup, H. P. et al. North Atlantic-Fennoscandian Holocene climate trends and mechanisms. Quat. Sci. Rev. 147, 365–378 (2016).

    Article  Google Scholar 

  7. Samartin, S. et al. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat. Geosci. 10, 207–212 (2017).

    Article  Google Scholar 

  8. Klemm, J. et al. A pollen-climate transfer function from the tundra and taiga vegetation in Arctic Siberia and its applicability to a Holocene record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 702–713 (2013).

    Article  Google Scholar 

  9. Jiang, D., Lang, X., Tian, Z. & Wang, T. Considerable model–data mismatch in temperature over China during the Mid-Holocene: results of PMIP simulations. J. Clim. 25, 4135–4153 (2012).

    Article  Google Scholar 

  10. Davis, B. A. S. & Brewer, S. Orbital forcing and role of the latitudinal insolation/temperature gradient. Clim. Dynam. 32, 143–165 (2009).

    Article  Google Scholar 

  11. Bartlein, P. J. et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim. Dynam. 37, 775–802 (2010).

    Article  Google Scholar 

  12. Meyer, H. et al. Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nat. Geosci. 8, 122–125 (2015).

    Article  Google Scholar 

  13. Coplen, T. B. Calibration of the calcite–water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim. Cosmochim. Acta 71, 3948–3957 (2007).

    Article  Google Scholar 

  14. Kurita, N. Modern isotope climatology of Russia: a first assessment. J. Geophys. Res. 109, D03102 (2004).

    Article  Google Scholar 

  15. Velichko, A. A. et al. Climate changes in East Europe and Siberia at the Late glacial–holocene transition. Quat. Int. 91, 75–99 (2002).

    Article  Google Scholar 

  16. Golovanova, I. V., Sal’manova, R. Y. & Demezhko, D. Y. Climate reconstruction in the Urals from geothermal data. Russ. Geol. Geophys. 53, 1366–1373 (2012).

    Article  Google Scholar 

  17. Demezhko, D. Y. & Shchapov, V. A. 80,000 Years ground surface temperature history inferred from the temperature-depth log measured in the superdeep hole SG-4 (the Urals, Russia). Glob. Planet. Change 29, 219–230 (2001).

    Article  Google Scholar 

  18. Danukalova, G. et al. Biostratigraphy of the Late Upper Pleistocene (Upper Neopleistocene) to Holocene deposits of the Belaya River valley (Southern Urals, Russia). Quat. Int. 231, 28–43 (2011).

    Article  Google Scholar 

  19. Guan, J. et al. Understanding the temporal slope of the temperature-water isotope relation during the deglaciation using isoCAM3: the slope equation. J. Geophys. Res. 121, 342–354 (2016).

    Google Scholar 

  20. Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P. & Jetel, M. Structure and origin of Holocene cold events. Quat. Sci. Rev. 30, 3109–3123 (2011).

    Article  Google Scholar 

  21. Novenko, E., Olchev, A., Desherevskaya, O. & Zuganova, I. Paleoclimatic reconstructions for the south of Valdai Hills (European Russia) as paleo-analogs of possible regional vegetation changes under global warming. Environ. Res. Lett. 4, 045016 (2009).

    Article  Google Scholar 

  22. Wanner, H. et al. Mid- to Late Holocene climate change: an overview. Quat. Sci. Rev. 27, 1791–1828 (2008).

    Article  Google Scholar 

  23. Davis, B. A. S., Brewer, S., Stevenson, A. C. & Guiot, J. The temperature of Europe during the Holocene reconstructed from pollen data. Quat. Sci. Rev. 22, 1701–1716 (2003).

    Article  Google Scholar 

  24. Mauri, A., Davis, B. A. S., Collins, P. M. & Kaplan, J. O. The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quat. Sci. Rev. 112, 109–127 (2015).

    Article  Google Scholar 

  25. Tarasov, P. et al. Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 440–457 (2007).

    Article  Google Scholar 

  26. Leroy, S. A. G., López-Merino, L., Tudryn, A., Chalié, F. & Gasse, F. Late Pleistocene and Holocene palaeoenvironments in and around the middle Caspian basin as reconstructed from a deep-sea core. Quat. Sci. Rev. 101, 91–110 (2014).

    Article  Google Scholar 

  27. Constantin, S., Bojar, A.-V., Lauritzen, S.-E. & Lundberg, J. Holocene and Late Pleistocene climate in the sub-Mediterranean continental environment: a speleothem record from Poleva Cave (Southern Carpathians, Romania). Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 322–338 (2007).

    Article  Google Scholar 

  28. Drăguşin, V. et al. Constraining Holocene hydrological changes in the Carpathian–Balkan region using speleothem δ18O and pollen-based temperature reconstructions. Clim. Past 10, 1363–1380 (2014).

    Article  Google Scholar 

  29. Göktürk, O. M. et al. Climate on the southern Black Sea coast during the Holocene: implications from the Sofular Cave record. Quat. Sci. Rev. 30, 2433–2445 (2011).

    Article  Google Scholar 

  30. Rimbu, N., Lohmann, G., Lorenz, S. J., Kim, J. H. & Schneider, R. R. Holocene climate variability as derived from alkenone sea surface temperature and coupled ocean–atmosphere model experiments. Clim. Dynam. 23, 215–227 (2004).

    Article  Google Scholar 

  31. Luthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).

    Article  Google Scholar 

  32. Dyke, A. S. Developments in Quaternary Science Vol. 2, 373–424 (2004).

    Google Scholar 

  33. Brayshaw, D. J., Hoskins, B. & Black, E. Some physical drivers of changes in the winter storm tracks over the North Atlantic and Mediterranean during the Holocene. Phil. Trans. R. Soc. A 368, 5185–5223 (2010).

    Article  Google Scholar 

  34. Jin, L., Chen, F., Morrill, C., Otto-Bliesner, B. L. & Rosenbloom, N. Causes of early Holocene desertification in arid central Asia. Clim. Dynam. 38, 1577–1591 (2011).

    Article  Google Scholar 

  35. Harrison, S. P., Prentice, I. C. & Bartlein, P. J. Influence of insolation and glaciation on atmospheric circulation in the North Atlantic sector: implications of general circulation model experiments for the Late Quaternary climatology of Europe. Quat. Sci. Rev. 11, 283–299 (1992).

    Article  Google Scholar 

  36. Siegert, M. Numerical reconstructions of the Eurasian Ice Sheet and climate during the Late Weichselian. Quat. Sci. Rev. 23, 1273–1283 (2004).

    Article  Google Scholar 

  37. Anderson, P. M. et al. Climatic changes of the last 18,000 years: observations and model simulations. Science 241, 1043–1052 (1988).

    Article  Google Scholar 

  38. Carlson, A. E. et al. Rapid early Holocene deglaciation of the Laurentide ice sheet. Nat. Geosci. 1, 620–624 (2008).

    Article  Google Scholar 

  39. Vinther, B. M. et al. Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland Ice Core Chronology. J. Geophys. Res. 113, D08115 (2008).

    Google Scholar 

  40. Ortega, P. et al. Characterizing atmospheric circulation signals in Greenland ice cores: insights from a weather regime approach. Clim. Dynam. 43, 2585–2605 (2014).

    Article  Google Scholar 

  41. Gajewski, K. Quantitative reconstruction of Holocene temperatures across the Canadian Arctic and Greenland. Glob. Planet. Change 128, 14–23 (2015).

    Article  Google Scholar 

  42. Briner, J. P. et al. Holocene climate change in Arctic Canada and Greenland. Quat. Sci. Rev. 147, 340–364 (2016).

    Article  Google Scholar 

  43. Kutzbach, J. E., Vavrus, S. J., Ruddiman, W. F. & Philippon-Berthier, G. Comparisons of atmosphere–ocean simulations of greenhouse gas-induced climate change for pre-industrial and hypothetical ‘no-anthropogenic’ radiative forcing, relative to present day. Holocene 21, 793–801 (2011).

    Article  Google Scholar 

  44. Carlson, A. E. & Clark, P. U. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev. Geophys. 50, RG4007 (2012).

    Article  Google Scholar 

  45. Wiersma, A. P. & Renssen, H. Model–data comparison for the 8.2 ka BP event: confirmation of a forcing mechanism by catastrophic drainage of Laurentide Lakes. Quat. Sci. Rev. 25, 63–88 (2006).

    Article  Google Scholar 

  46. Nesje, A., Dahl, S. O. & Bakke, J. Were abrupt Lateglacial and early-Holocene climatic changes in northwest Europe linked to freshwater outbursts to the North Atlantic and Arctic Oceans? Holocene 14, 299–310 (2004).

    Article  Google Scholar 

  47. Hald, M. et al. Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene. Quat. Sci. Rev. 26, 3423–3440 (2007).

    Article  Google Scholar 

  48. Lewis, C. F. M., Miller, A. A. L., Levac, E., Piper, D. J. W. & Sonnichsen, G. V. Lake Agassiz outburst age and routing by Labrador Current and the 8.2 cal ka cold event. Quat. Int. 260, 83–97 (2012).

    Article  Google Scholar 

  49. Cheng, H. et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371–372, 82–91 (2013).

    Article  Google Scholar 

  50. Fohlmeister, J. A statistical approach to construct composite climate records of dated archives. Quat. Geochronol. 14, 48–56 (2012).

    Article  Google Scholar 

  51. Dreybrodt, W., Hansen, M. & Scholz, D. Processes affecting the stable isotope composition of calcite during precipitation on the surface of stalagmites: laboratory experiments investigating the isotope exchange between DIC in the solution layer on top of a speleothem and the CO2 of the cave atmosphere. Geochim. Cosmochim. Acta 174, 247–262 (2016).

    Article  Google Scholar 

  52. Deininger, M., Fohlmeister, J., Scholz, D. & Mangini, A. Isotope disequilibrium effects: the influence of evaporation and ventilation effects on the carbon and oxygen isotope composition of speleothems—a model approach. Geochim. Cosmochim. Acta 96, 57–79 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Rychagova, the Ufa Speleo Club, and P. Yakubson for cave access and assistance with stalagmite sampling. We thank J. Alder, O. Timm, Z. Liu and R. Smith for providing palaeoclimate model data. Fieldwork and cave monitoring equipment were funded by grants to J.L.B. from the National Speleological Society, Geological Society of America, William J. Fulbright Foundation, and the UNLV Graduate and Professional Student Association. Stable-isotope analyses were supported by NSF grant EAR-0521196 to M.S.L. and facilities support by UNLV, and by EAR-0326902 to UNM.

Author information

Authors and Affiliations

Authors

Contributions

J.L.B., M.S.L. and O.C. designed the study; J.L.B. and O.C. completed the fieldwork. J.L.B. and M.S.L. performed stable-isotope analyses; Y.A. and V.J.P. performed U-series dating. J.L.B. wrote the first draft of the manuscript. All authors contributed to data interpretation and the preparation of the final manuscript.

Corresponding author

Correspondence to Jonathan L. Baker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 11597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, J., Lachniet, M., Chervyatsova, O. et al. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing. Nature Geosci 10, 430–435 (2017). https://doi.org/10.1038/ngeo2953

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2953

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing