Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Physical and neurobehavioral determinants of reproductive onset and success

Abstract

The ages of puberty, first sexual intercourse and first birth signify the onset of reproductive ability, behavior and success, respectively. In a genome-wide association study of 125,667 UK Biobank participants, we identify 38 loci associated (P < 5 × 10−8) with age at first sexual intercourse. These findings were taken forward in 241,910 men and women from Iceland and 20,187 women from the Women's Genome Health Study. Several of the identified loci also exhibit associations (P < 5 × 10−8) with other reproductive and behavioral traits, including age at first birth (variants in or near ESR1 and RBM6SEMA3F), number of children (CADM2 and ESR1), irritable temperament (MSRA) and risk-taking propensity (CADM2). Mendelian randomization analyses infer causal influences of earlier puberty timing on earlier first sexual intercourse, earlier first birth and lower educational attainment. In turn, likely causal consequences of earlier first sexual intercourse include reproductive, educational, psychiatric and cardiometabolic outcomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bar chart of genetic correlations for age at first sexual intercourse.
Figure 2: Manhattan plot of the GWAS for age at first sexual intercourse.
Figure 3: Cluster plot displaying associations between the 38 lead SNPs for age at first sexual intercourse and 15 other behavioral, reproductive and health-related traits in the UK Biobank study.

References

  1. Parent, A.S. et al. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr. Rev. 24, 668–693 (2003).

    Article  PubMed  Google Scholar 

  2. Lehmann, A., Scheffler, C. & Hermanussen, M. The variation in age at menarche: an indicator of historic developmental tempo. Anthropol. Anz. 68, 85–99 (2010).

    Article  PubMed  Google Scholar 

  3. Sohn, K. A world record in the improvement in biological standards of living in Korea: evidence from age at menarche. in Discussion Paper Series 1–34 (Centre for Economic History, Australian National University, 2015).

  4. Waylen, A. & Wolke, D. Sex 'n' drugs 'n' rock 'n' roll: the meaning and social consequences of pubertal timing. Eur. J. Endocrinol. 151 (suppl. 3), U151–U159 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Gaudineau, A. et al. Factors associated with early menarche: results from the French Health Behaviour in School-aged Children (HBSC) study. BMC Public Health 10, 175 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Day, F.R., Elks, C.E., Murray, A., Ong, K.K. & Perry, J.R. Puberty timing associated with diabetes, cardiovascular disease and also diverse health outcomes in men and women: the UK Biobank study. Sci. Rep. 5, 11208 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Charalampopoulos, D., McLoughlin, A., Elks, C.E. & Ong, K.K. Age at menarche and risks of all-cause and cardiovascular death: a systematic review and meta-analysis. Am. J. Epidemiol. 180, 29–40 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gluckman, P.D. & Hanson, M.A. Evolution, development and timing of puberty. Trends Endocrinol. Metab. 17, 7–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Lam, T.H., Shi, H.J., Ho, L.M., Stewart, S.M. & Fan, S. Timing of pubertal maturation and heterosexual behavior among Hong Kong Chinese adolescents. Arch. Sex. Behav. 31, 359–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Baams, L., Dubas, J.S., Overbeek, G. & van Aken, M.A. Transitions in body and behavior: a meta-analytic study on the relationship between pubertal development and adolescent sexual behavior. J. Adolesc. Health 56, 586–598 (2015).

    Article  PubMed  Google Scholar 

  11. Hochberg, Z., Gawlik, A. & Walker, R.S. Evolutionary fitness as a function of pubertal age in 22 subsistence-based traditional societies. Int. J. Pediatr. Endocrinol. 2011, 2 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hawes, Z.C., Wellings, K. & Stephenson, J. First heterosexual intercourse in the United Kingdom: a review of the literature. J. Sex Res. 47, 137–152 (2010).

    Article  PubMed  Google Scholar 

  13. Waldron, M. et al. Parental separation, parental alcoholism, and timing of first sexual intercourse. J. Adolesc. Health 56, 550–556 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lenciauskiene, I. & Zaborskis, A. The effects of family structure, parent–child relationship and parental monitoring on early sexual behaviour among adolescents in nine European countries. Scand. J. Public Health 36, 607–618 (2008).

    Article  PubMed  Google Scholar 

  15. Ingham, R., Woodcock, A. & Stenner, K. Getting to know you... young people's knowledge of their partners at first intercourse. J. Community Appl. Soc. Psychol. 1, 117–132 (1991).

    Article  Google Scholar 

  16. Allen, J.P., Schad, M.M., Oudekerk, B. & Chango, J. What ever happened to the “cool” kids? Long-term sequelae of early adolescent pseudomature behavior. Child Dev. 85, 1866–1880 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Martin, N.G., Eaves, L.J. & Eysenck, H.J. Genetical, environmental and personality factors influencing the age of first sexual intercourse in twins. J. Biosoc. Sci. 9, 91–97 (1977).

    Article  CAS  PubMed  Google Scholar 

  18. Harden, K.P. & Mendle, J. Why don't smart teens have sex? A behavioral genetic approach. Child Dev. 82, 1327–1344 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Perry, J.R. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514, 92–97 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Day, F.R. et al. Genetic determinants of puberty timing in men and women: shared genetic aetiology between sexes and with health-related outcomes. Nat. Commun. 6, 8842 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Burgess, S., Butterworth, A., Malarstig, A. & Thompson, S.G. Use of Mendelian randomisation to assess potential benefit of clinical intervention. Br. Med. J. 345, e7325 (2012).

    Article  Google Scholar 

  22. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loh, P.R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stulp, G., Barrett, L., Tropf, F.C. & Mills, M. Does natural selection favour taller stature among the tallest people on earth? Proc. Biol. Soc. 282, 20150211 (2015).

    Article  Google Scholar 

  25. Sulem, P. et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat. Genet. 39, 1443–1452 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet. 6, e1000993 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ibrahim-Verbaas, C.A. et al. GWAS for executive function and processing speed suggests involvement of the CADM2 gene. Mol. Psychiatry 21, 189–197 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Emiliani, F.E., Sedlak, T.W. & Sawa, A. Oxidative stress and schizophrenia: recent breakthroughs from an old story. Curr. Opin. Psychiatry 27, 185–190 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ruan, H. et al. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc. Natl. Acad. Sci. USA 99, 2748–2753 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lahat, A. et al. Temperamental exuberance and executive function predict propensity for risk taking in childhood. Dev. Psychopathol. 24, 847–856 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Martin, A.K., Robinson, G., Dzafic, I., Reutens, D. & Mowry, B. Theory of mind and the social brain: implications for understanding the genetic basis of schizophrenia. Genes Brain Behav. 13, 104–117 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Dinzeo, T.J. & Docherty, N.M. Normal personality characteristics in schizophrenia: a review of the literature involving the FFM. J. Nerv. Ment. Dis. 195, 421–429 (2007).

    PubMed  Google Scholar 

  34. Hoptman, M.J. Impulsivity and aggression in schizophrenia: a neural circuitry perspective with implications for treatment. CNS Spectr. 20, 280–286 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Altmäe, S. et al. Allelic estrogen receptor 1 (ESR1) gene variants predict the outcome of ovarian stimulation in in vitro fertilization. Mol. Hum. Reprod. 13, 521–526 (2007).

    Article  PubMed  Google Scholar 

  36. de Mattos, C.S. et al. ESR1 and ESR2 gene polymorphisms are associated with human reproduction outcomes in Brazilian women. J. Ovarian Res. 7, 114 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Drummond, A.E. The role of steroids in follicular growth. Reprod. Biol. Endocrinol. 4, 16 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang, S. et al. Physiological and molecular determinants of embryo implantation. Mol. Aspects Med. 34, 939–980 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hess, R.A. et al. A role for oestrogens in the male reproductive system. Nature 390, 509–512 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carreau, S. & Hess, R.A. Oestrogens and spermatogenesis. Phil. Trans. R. Soc. Lond. B 365, 1517–1535 (2010).

    Article  CAS  Google Scholar 

  41. Couse, J.F. et al. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors α and β. Science 286, 2328–2331 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, H. et al. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509, 627–632 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Allen, N.E., Sudlow, C., Peakman, T., Collins, R. & UK Biobank. UK Biobank data: come and get it. Sci. Transl. Med. 6, 224ed4 (2014).

    Article  PubMed  Google Scholar 

  44. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Loh, P.R. et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat. Genet. 47, 1385–1392 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gudbjartsson, D.F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Ridker, P.M. et al. Rationale, design, and methodology of the Women's Genome Health Study: a genome-wide association study of more than 25,000 initially healthy American women. Clin. Chem. 54, 249–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Wood, A.R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  52. Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been conducted using the UK Biobank Resource. This work was supported by the Medical Research Council (Unit Programme numbers MC_UU_12015/1 and MC_UU_12015/2).

Author information

Authors and Affiliations

Authors

Contributions

All authors had full access to all of the data and take responsibility for the integrity of the data and the accuracy of the data analysis. F.R.D., P.M.R., K.S., K.K.O. and J.R.B.P. designed the studies. R.A.S., A.H., A.K., G.M., O.T.M., D.G., U.T. and J.E.B. were responsible for collection and generation of data. F.R.D., H.H., D.I.C., L.M.R., P.-R.L., P.S. and J.R.B.P. performed the statistical analysis; all authors contributed to the interpretation of the findings. F.R.D., K.K.O. and J.R.B.P. drafted the manuscript; all authors contributed to the final version.

Corresponding authors

Correspondence to Ken K Ong or John R B Perry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4. (PDF 7335 kb)

Supplementary Tables 1–15

Supplementary Tables 1–15. (XLSX 816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Day, F., Helgason, H., Chasman, D. et al. Physical and neurobehavioral determinants of reproductive onset and success. Nat Genet 48, 617–623 (2016). https://doi.org/10.1038/ng.3551

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing