Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk

Abstract

To identify variants for multiple myeloma risk, we conducted a genome-wide association study with validation in additional series totaling 4,692 individuals with multiple myeloma (cases) and 10,990 controls. We identified four risk loci at 3q26.2 (rs10936599, P = 8.70 × 10−14), 6p21.33 (rs2285803, PSORS1C2, P = 9.67 × 10−11), 17p11.2 (rs4273077, TNFRSF13B, P = 7.67 × 10−9) and 22q13.1 (rs877529, CBX7, P = 7.63 × 10−16). These data provide further evidence for genetic susceptibility to this B-cell hematological malignancy, as well as insight into the biological basis of predisposition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regional plots of association results and recombination rates for the 3q26.2, 6p21.33, 17p11.2 and 22q13.1 susceptibility loci.

Similar content being viewed by others

References

  1. Kyle, R.A. & Rajkumar, S.V. Multiple myeloma. N. Engl. J. Med. 351, 1860–1873 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Palumbo, A. & Anderson, K. Multiple myeloma. N. Engl. J. Med. 364, 1046–1060 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Broderick, P. et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat. Genet. 44, 58–61 (2012).

    Article  CAS  Google Scholar 

  4. Weinhold, N. et al. The CCND1 G870A polymorphism is a risk factor for t(11;14)(q13;q32) multiple myeloma. Nat. Genet. 45, 522–525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmermund, A. et al. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. Risk factors, evaluation of coronary calcium and lifestyle. Am. Heart J. 144, 212–218 (2002).

    Article  PubMed  Google Scholar 

  6. Morgan, G.J. et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet 376, 1989–1999 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Power, C. & Elliott, J. Cohort profile: 1958 British birth cohort (National Child Development Study). Int. J. Epidemiol. 35, 34–41 (2006).

    Article  PubMed  Google Scholar 

  8. Clayton, D.G. et al. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat. Genet. 37, 1243–1246 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Pettiti, D. Meta-analysis decision analysis and cost-effectivness analysis. Oxford University Press (1994).

  11. Houlston, R.S. et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat. Genet. 42, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones, A.M. et al. TERC polymorphisms are associated both with susceptibility to colorectal cancer and with longer telomeres. Gut 61, 248–254 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Skibola, C.F. et al. Genetic variants at 6p21.33 are associated with susceptibility to follicular lymphoma. Nat. Genet. 41, 873–875 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Conde, L. et al. Genome-wide association study of follicular lymphoma identifies a risk locus at 6p21.32. Nat. Genet. 42, 661–664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smedby, K.E. et al. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B-cell lymphoma. PLoS Genet. 7, e1001378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Enciso-Mora, V. et al. A genome-wide association study of Hodgkin's lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3). Nat. Genet. 42, 1126–1130 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leslie, S., Donnelly, P. & McVean, G. A statistical method for predicting classical HLA alleles from SNP data. Am. J. Hum. Genet. 82, 48–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dilthey, A.T., Moutsianas, L., Leslie, S. & McVean, G. HLA*IMP—an integrated framework for imputing classical HLA alleles from SNP genotypes. Bioinformatics 27, 968–972 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gross, J.A. et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. Impaired B cell maturation in mice lacking BLyS. Immunity 15, 289–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Liao, M. et al. Genome-wide association study identifies common variants at TNFRSF13B associated with IgG level in a healthy Chinese male population. Genes Immun. 13, 509–513 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Seshasayee, D. et al. Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BLyS receptor. Immunity 18, 279–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Moreaux, J. et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 106, 1021–1030 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Yaccoby, S. et al. Atacicept (TACI-Ig) inhibits growth of TACIhigh primary myeloma cells in SCID-hu mice and in coculture with osteoclasts. Leukemia 22, 406–413 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Gil, J., Bernard, D. & Peters, G. Role of polycomb group proteins in stem cell self-renewal and cancer. DNA Cell Biol. 24, 117–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Aguilo, F., Zhou, M.M. & Walsh, M.J. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res. 71, 5365–5369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scott, C.L. et al. Role of the chromobox protein CBX7 in lymphomagenesis. Proc. Natl. Acad. Sci. USA 104, 5389–5394 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walker, B.A. et al. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood 108, 1733–1743 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Nica, A.C. et al. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS Genet. 7, e1002003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stranger, B.E. et al. Patterns of cis regulatory variation in diverse human populations. PLoS Genet. 8, e1002639 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dimas, A.S. et al. Common regulatory variation impacts gene expression in a cell type–dependent manner. Science 325, 1246–1250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 28, 817–825 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dewald, G.W., Kyle, R.A., Hicks, G.A. & Greipp, P.R. The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood 66, 380–390 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Debes-Marun, C.S. et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia 17, 427–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Fonseca, R. et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 23, 2210–2221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Walker, B.A. et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood 116, e56–e65 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Eisen, T., Matakidou, A. & Houlston, R. Identification of low penetrance alleles for lung cancer: the GEnetic Lung CAncer Predisposition Study (GELCAPS). BMC Cancer 8, 244 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Penegar, S. et al. National study of colorectal cancer genetics. Br. J. Cancer 97, 1305–1309 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Higgins, J.P. & Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

    Article  PubMed  Google Scholar 

  40. Ioannidis, J.P., Ntzani, E.E. & Trikalinos, T.A. 'Racial' differences in genetic effects for complex diseases. Nat. Genet. 36, 1312–1318 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Altieri, A., Chen, B., Bermejo, J.L., Castro, F. & Hemminki, K. Familial risks and temporal incidence trends of multiple myeloma. Eur. J. Cancer 42, 1661–1670 (2006).

    Article  PubMed  Google Scholar 

  43. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Myers, S., Bottolo, L., Freeman, C., McVean, G. & Donnelly, P. A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Chiecchio, L. et al. Deletion of chromosome 13 detected by conventional cytogenetics is a critical prognostic factor in myeloma. Leukemia 20, 1610–1617 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Neben, K. et al. Combining information regarding chromosomal aberrations t(4;14) and del(17p13) with the International Staging System classification allows stratification of myeloma patients undergoing autologous stem cell transplantation. Haematologica 95, 1150–1157 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stranger, B.E. et al. Genome-wide associations of gene expression variation in humans. PLoS Genet. 1, e78 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stranger, B.E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Leukaemia Lymphoma Research and Myeloma UK provided principal funding for this study in the UK. Additional funding was provided by Cancer Research UK (C1298/A8362 supported by the Bobby Moore Fund) and the NHS through the Biological Research Centre of the National Institute for Health Research at the Royal Marsden Hospital NHS Trust. This study made use of genotyping data from the 1958 Birth Cohort. Genotyping data on controls were generated by the Wellcome Trust Sanger Institute. A full list of the investigators who contributed to the generation of the data is available at http://www.wtccc.org.uk. In Germany (Heidelberg), funding was provided to Dietmar-Hopp-Stiftung Walldorf, the University Hospital Heidelberg, Deutsche Krebshilfe and the Systems Medicine funding from the German Ministry of Education and Science. We are grateful to all investigators who contributed to the National Study of Colorectal Cancer Genetics (NSCCG) and the Genetic Lung Cancer Predisposition Study (GELCAPS), from which controls in the replication were drawn. The GWAS made use of genotyping data from the population-based HNR study. The HNR study is supported by the Heinz Nixdorf Foundation (Germany). Additionally, the study is funded by the German Ministry of Education and Science and the German Research Council (DFG; projects SI 236/8-1, SI236/9-1, ER 155/6-1 and DFG CRU 216). Funding was provided to L.E. by the Medical Faculty of the University Hospital of Essen (IFORES). The genotyping of the Illumina HumanOmni-1 Quad BeadChips of the HNR subjects was financed by DZNE, Bonn. We are extremely grateful to all investigators who contributed to the generation of this data set. The German replication controls were collected by P. Bugert, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service of Baden-Württemberg-Hessen, Mannheim, Germany. We are grateful to all the patients and investigators at the individual centers for their participation. We also thank the staff of the Clinical Trials Research Unit University of Leeds and the National Cancer Research Institute Haematology Clinical Studies Group.

Author information

Authors and Affiliations

Authors

Contributions

R.S.H. and K.H. designed the study. R.S.H. and G.M. obtained financial support in the UK, and K.H. and H.G. obtained support in Germany. R.S.H. drafted the manuscript. D.C., B.C. and N.W. performed the principal statistical and bioinformatic analyses. S.E.D. and G.M. performed additional statistical and bioinformatic analyses. P.B. coordinated the UK laboratory analyses. J.V. and A.H. performed genotyping in the UK. D.C.J. managed and prepared Myeloma IX and Myeloma XI case study DNA samples. J.M.A. conceived of the Newcastle-based myeloma study (NMS). J.M.A. established the study and supervised data collation and sample management of the NMS. J.A.I., G.H.J., G.P., J.A.L.F. and C.F. developed protocols for the recruitment of individuals with myeloma and performed sample collection of cases within the NMS. H.G., D.H., K.N. and N.W. coordinated and managed the German DNA samples, and K.H. and A.F. coordinated the German genotyping. H.E., C.L. and C.S. ascertained and collected DSMM and Ulm case study samples, and C.L. prepared DNA samples. E.D. and N.W. performed genotyping of German replication cases and controls. B.A.W. performed UK expression analyses. F.M.R. performed UK and A.J. performed German FISH analyses. G.J.M., F.E.D., W.A.G., G.H.J. and J.A.I. performed ascertainment and collection of case study samples. P.H., T.W.M. and M.M.N. performed and coordinated the GWAS of German cases and controls. L.E. ascertained and managed the HNR sample. All authors contributed to the final paper.

Corresponding author

Correspondence to Richard S Houlston.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–6 (PDF 2619 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chubb, D., Weinhold, N., Broderick, P. et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat Genet 45, 1221–1225 (2013). https://doi.org/10.1038/ng.2733

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2733

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing