Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Use of human tissue to assess the oncogenic activity of melanoma-associated mutations

Abstract

Multiple genetic alterations occur in melanoma, a lethal skin malignancy of increasing incidence1,2. These include mutations that activate Ras and two of its effector cascades, Raf and phosphoinositide 3-kinase (PI3K). Induction of Ras and Raf can be caused by active N-Ras and B-Raf mutants as well as by gene amplification3,4,5. Activation of PI3K pathway components occurs by PTEN loss and by AKT3 amplification6,7,8. Melanomas also commonly show impairment of the p16INK4A-CDK4-Rb and ARF-HDM2-p53 tumor suppressor pathways. CDKN2A mutations can produce p16INK4A and ARF protein loss5,9,10,11. Rb bypass can also occur through activating CDK4 mutations as well as by CDK4 amplification5,12. In addition to ARF deletion, p53 pathway disruption can result from dominant negative TP53 mutations5,13. TERT amplification also occurs in melanoma5. The extent to which these mutations can induce human melanocytic neoplasia is unknown. Here we characterize pathways sufficient to generate human melanocytic neoplasia and show that genetically altered human tissue facilitates functional analysis of mutations observed in human tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of mutant proteins in human melanocytes.
Figure 2: Invasive human melanocytic neoplasia.
Figure 3: Effect of disrupting function of p53 and Rb pathways and the impact of hTERT.
Figure 4: Capacity of active PI3K and B-Raf to recapitulate Ras-driven human melanocytic neoplasia.

Similar content being viewed by others

References

  1. Gilchrest, B.A., Eller, M.S., Geller, A.C. & Yaar, M. The pathogenesis of melanoma induced by ultraviolet radiation. N. Engl. J. Med. 340, 1341–1348 (1999).

    Article  CAS  Google Scholar 

  2. Schaffer, J.V., Rigel, D.S., Kopf, A.W. & Bolognia, J.L. Cutaneous melanoma–past, present, and future. J. Am. Acad. Dermatol. 51, S65–S69 (2004).

    Article  Google Scholar 

  3. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  Google Scholar 

  4. Pollock, P.M. et al. High frequency of BRAF mutations in nevi. Nat. Genet. 33, 19–20 (2003).

    Article  CAS  Google Scholar 

  5. Rodolfo, M., Daniotti, M. & Vallacchi, V. Genetic progression of metastatic melanoma. Cancer Lett. 214, 133–147 (2004).

    Article  CAS  Google Scholar 

  6. Tsao, H., Goel, V., Wu, H., Yang, G. & Haluska, F.G. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J. Invest. Dermatol. 122, 337–341 (2004).

    Article  CAS  Google Scholar 

  7. Wu, H., Goel, V. & Haluska, F.G. PTEN signaling pathways in melanoma. Oncogene 22, 3113–3122 (2003).

    Article  CAS  Google Scholar 

  8. Stahl, J.M. et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res. 64, 7002–7010 (2004).

    Article  CAS  Google Scholar 

  9. Kamb, A. et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat. Genet. 8, 23–26 (1994).

    Article  CAS  Google Scholar 

  10. Hussussian, C.J. et al. Germline p16 mutations in familial melanoma. Nat. Genet. 8, 15–21 (1994).

    Article  CAS  Google Scholar 

  11. Hayward, N.K. Genetics of melanoma predisposition. Oncogene 22, 3053–3062 (2003).

    Article  CAS  Google Scholar 

  12. Wolfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284 (1995).

    Article  CAS  Google Scholar 

  13. Albino, A.P. et al. Mutation and expression of the p53 gene in human malignant melanoma. Melanoma Res. 4, 35–45 (1994).

    Article  CAS  Google Scholar 

  14. Weitzman, J.B. & Yaniv, M. Rebuilding the road to cancer. Nature 400, 401–402 (1999).

    Article  CAS  Google Scholar 

  15. Hamad, N.M. et al. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 16, 2045–2057 (2002).

    Article  CAS  Google Scholar 

  16. Nishimura, E.K. et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854–860 (2002).

    Article  CAS  Google Scholar 

  17. Sharpless, N.E., Kannan, K., Xu, J., Bosenberg, M.W. & Chin, L. Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene 22, 5055–5059 (2003).

    Article  CAS  Google Scholar 

  18. Kannan, K. et al. Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Proc. Natl. Acad. Sci. USA 100, 1221–1225 (2003).

    Article  CAS  Google Scholar 

  19. Beer, S. et al. Developmental context determines latency of MYC-induced tumorigenesis. PLoS Biol. 2, e332 (2004).

    Article  Google Scholar 

  20. Dajee, M. et al. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421, 639–643 (2003).

    Article  CAS  Google Scholar 

  21. Lazarov, M. et al. CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis. Nat. Med. 8, 1105–1114 (2002).

    Article  CAS  Google Scholar 

  22. Clark, E.A., Golub, T.R., Lander, E.S. & Hynes, R.O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).

    Article  CAS  Google Scholar 

  23. Brookes, S., Rowe, J., Gutierrez Del Arroyo, A., Bond, J. & Peters, G. Contribution of p16(INK4a) to replicative senescence of human fibroblasts. Exp. Cell Res. 298, 549–559 (2004).

    Article  CAS  Google Scholar 

  24. Randerson-Moor, J.A. et al. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum. Mol. Genet. 10, 55–62 (2001).

    Article  CAS  Google Scholar 

  25. Stewart, S.A. et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc. Natl. Acad. Sci. USA 99, 12606–12611 (2002).

    Article  CAS  Google Scholar 

  26. Chang, S. & DePinho, R.A. Telomerase extracurricular activities. Proc. Natl. Acad. Sci. USA 99, 12520–12522 (2002).

    Article  CAS  Google Scholar 

  27. Kinsella, T.M. & Nolan, G.P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413 (1996).

    Article  CAS  Google Scholar 

  28. Deng, H., Choate, K.A., Lin, Q. & Khavari, P.A. High efficiency gene transfer and pharmacologic selection of genetically engineered human keratinocytes. Biotechniques 25, 274–280 (1998).

    Article  CAS  Google Scholar 

  29. Hsu, M., Andl, T., Li, G., Meinkoth, J.L. & Herlyn, M. Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J. Cell Sci. 113, 1535–1542 (2000).

    CAS  PubMed  Google Scholar 

  30. Kern, S.E. et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256, 827–830 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Felsher, A. Oro, S. Artandi, H.Y. Chang, S. Swetter, H. Lee, Z. Siprashvili, F. Scholl, J. Reuter, T. Ridky and P. Dumesic for presubmission review and discussions; T. Cai for PI3K reagents; B. Vogelstein and K. Kinzler for p53 reporter constructs; M. Mihm, S. Kohler and J. Harvell for pathologic evaluation; S. Tao for technical support; L. Attardi for PERP antibody; and R. Marais for B-RafV599E and advice. This work was supported by the US Veterans Affairs Office of Research and Development, by the National Institutes of Arthritis and Musculoskeletal and Skin Diseases (US National Institutes of Health). Y.C. is a Howard Hughes Medical Institute predoctoral fellow. A.E.A. was supported by a training grant from the National Institutes of Arthritis and Musculoskeletal and Skin Diseases (US National Institutes of Health) and a Warren-Whitman-Richardson Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A Khavari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Proliferation and apoptosis of human melanocytes after gene transfer. (PDF 325 kb)

Supplementary Fig. 2

Melanocyte neoplasms are vascularized. (PDF 207 kb)

Supplementary Fig. 3

Confirmation of expression of transferred genes. (PDF 498 kb)

Supplementary Fig. 4

Mosaic marker gene expression in genetically induced melanocytic neoplasms. (PDF 167 kb)

Supplementary Fig. 5

Local invasion but lack of metastasis with A375 human melanoma cell line. (PDF 267 kb)

Supplementary Fig. 6

Immunoblots of p53 targets and Rb. (PDF 151 kb)

Supplementary Fig. 7

Mitotic activity in vivo as a function of hTERT transduction. (PDF 218 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chudnovsky, Y., Adams, A., Robbins, P. et al. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nat Genet 37, 745–749 (2005). https://doi.org/10.1038/ng1586

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1586

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing