Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats

Abstract

Coronary heart disease, hypertension, non-insulin-dependent diabetes and obesity are major causes of ill health in industrial societies. Disturbances of carbohydrate and lipid metabolism are a common feature of these disorders1–9. The bases for these disturbances and their roles in disease pathogenesis are poorly understood. The spontaneously hypertensive rat (SHR), a widely used animal model of essential hypertension10, has a global defect in insulin action on glucose metabolism and shows reduced catecholamine action on lipolysis in fat cells11–14. In our study we used cellular defects in carbohydrate and lipid metabolism to dissect the genetics of defective insulin and catecholamine action in the SHR strain. In a genome screen for loci linked to insulin and catecholamine action, we identified two quantitative trait loci (QTLs) for defective insulin action, on chromosomes 4 and 12. We found that the major (and perhaps only) genetic determinant of defective control of lipolysis in SHR maps to the same region of chromosome 4. These linkage results were ascertained in at least two independent crosses. As the SHR strain manifests many of the defining features of human metabolic Syndrome X, in which hypertension associates with insulin resistance, dyslipidaemia and abdominal obesity, the identification of genes for defective insulin and catecholamine action in SHR may facilitate gene identification in this syndrome and in related human conditions, such as type-2 diabetes and familial combined hyperlipidaemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Evans, D.J., Murray, R. & Kissebah, A.H. Relationship between skeletal muscle insulin resistance, insulin-mediated glucose disposal and insulin binding. Effects of obesity and body fat topography. J. Clin. Invest. 74, 1515–1525 (1984).

    Article  CAS  Google Scholar 

  2. Ferrannini, E. et al. Insulin resistance in essential hypertension. N. Engl. J. Med. 317, 350–357 (1987).

    Article  CAS  Google Scholar 

  3. Reaven, G.M. Banting Lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988).

    Article  CAS  Google Scholar 

  4. Hunt, S.C. et al. Apolipoprotein, low density lipoprotein subfraction, and insulin associations with familial combined hyperlipidemia: study of Utah patients with familial dyslipidemic hypertension. Arteriosclerosis 9, 335–344 (1989).

    Article  CAS  Google Scholar 

  5. Kaplan, N.M. The deadly quartet: upper body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch. Intern. Med. 149, 1514–1520 (1989).

    Article  CAS  Google Scholar 

  6. McGarry, J.D. What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258, 766–770 (1992).

    Article  CAS  Google Scholar 

  7. Cohen, B., Novick, D. & Rubinstein, M. Modulation of insulin activities by leptin. Science 274, 1185–1188 (1996).

    Article  CAS  Google Scholar 

  8. Polonsky, K.S., Sturis, J. & Bell, G.I. Non-insulin-dependent diabetes mellitus - a genetically programmed failure of the beta cell to compensate for insulin resistance. N. Engl. J. Med. 334, 777–783 (1996).

    Article  CAS  Google Scholar 

  9. Reaven, G.M. Lithell, H. & Landsberg, L. Hypertension and associated metabolic abnormalities - the role of insulin resistance and the sympathoadrenal system. N. Engl. J. Med. 334, 374–381 (1996).

    Article  CAS  Google Scholar 

  10. Yamori, Y. Development of the spontaneously hypertensive rat (SHR) and of various spontaneous rat models, and their implications. in Handbook of Hypertension, Vol 4. Experimental and Genetic Models of Hypertension (ed. de Jong, W.) 224–239 (Elsevier Science Publishers, New York, 1984).

    Google Scholar 

  11. Chiappe de Cingolani, G.E. Adipocyte responsiveness to norepinephrine in spontaneously hypertensive rats. Metabolism 37, 318–322 (1988).

    Article  CAS  Google Scholar 

  12. Reaven, G.M., Chang, H., Hoffman, B.B. & Azhar, S. Resistance to insulin-stimulated glucose uptake in adipocytes from spontaneously hypertensive rats. Diabetes 38, 1155–1160 (1989).

    Article  CAS  Google Scholar 

  13. Rao, R.H. Insulin resistance in spontaneously hypertensive rats: difference in interpretation based on insulin infusion rate or on plasma insulin in glucose clamp studies. Diabetes 42, 1364–1371 (1993).

    Article  CAS  Google Scholar 

  14. Paternostro, G., Clarke, K., Heath, J., Seymour, A.M. & Radda, G.K. Decreased GLUT-4 mRNA content and insulin-sensitive deoxyglucose uptake show insulin resistance in the hypertensive rat heart. Cardiovasc. Res. 30, 205–211 (1995).

    Article  CAS  Google Scholar 

  15. Pravenec, M., Klir, P., Kren, V., Zicha, J. & Kunes, J. An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. Hypertens. 7, 217–221 (1989).

    Article  CAS  Google Scholar 

  16. Pravenec, M. et al. Mapping of quantitative trait loci for blood pressure and cardiac mass in the rat by genome scanning of recombinant inbred strains. J. Clin. Invest. 96, 1973–1978 (1995).

    Article  CAS  Google Scholar 

  17. Bottger, A. et al. Quantitative trait loci influencing cholesterol and phospholipid phenotypes map to chromosomes that contain genes regulating blood pressure in the spontaneously hypertensive rat. J. Clin. Invest. 98, 856–862 (1996).

    Article  CAS  Google Scholar 

  18. Pravenec, M. et al. A genetic linkage map of the rat derived from recombinant inbred strains. Mamm. Genome 7, 117–127 (1996).

    Article  CAS  Google Scholar 

  19. Goldmuntz, E.A. et al. Genetic map of 16 polymorphic markers forming three linkage groups assigned to rat Chromosome 4. Mamm. Genome 6, 459–463 (1995).

    Article  CAS  Google Scholar 

  20. Jacob, H.J. et al. A genetic linkage map of the laboratory rat, flattus norvegicus. Nature Genet. 9, 63–69 (1995).

    Article  CAS  Google Scholar 

  21. Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247 (1995).

    Article  CAS  Google Scholar 

  22. Hilbert, P. et al. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353, 521–529 (1991).

    Article  CAS  Google Scholar 

  23. Jacob, H.J. et al. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67, 213–224 (1991).

    Article  CAS  Google Scholar 

  24. Galli, J. et al. Genetic analysis of non-insulin dependent diabetes mellitus in the GK rat. Nature Genet. 12, 31–37 (1996).

    Article  CAS  Google Scholar 

  25. Gauguier, D. et al. Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nature Genet. 12, 38–43 (1996).

    Article  CAS  Google Scholar 

  26. Hubner, N. et al. The gene encoding endothelial nitric oxide synthase, Nos3, maps to rat chromosome 4. Mamm. Genome 6, 758–759 (1995).

    Article  CAS  Google Scholar 

  27. Beckers, M.C. et al. A high resolution map of mouse chromosome 5 encompassing the reeler (rl) locus. Genomics 23, 685–690 (1994).

    Article  CAS  Google Scholar 

  28. Riess, O. et al. Precise mapping of the brain alpha 2-adrenergic receptor gene within chromosome 4p16. Genomics 19, 298–302 (1994).

    Article  CAS  Google Scholar 

  29. Klocke, R. et al. Chromosomal mapping in the mouse of eight K(+)-channel genes representing the four Shaker-like subfamilies Shaker, Shab, Shaw, and Shal. Genomics 18, 568–574 (1993).

    Article  CAS  Google Scholar 

  30. Dohi, Y., Kojima, M. & Sato, K. Endothelial modulation of contractile responses in arteries from hypertensive rats. Hypertension 28, 732–737 (1996).

    Article  CAS  Google Scholar 

  31. Scherrer, U., Randin, D., Vollenweider, P., Vollenweider, L. & Nicod, P. Nitric oxide release accounts for insulin's vascular effects in humans. J. Clin. Invest. 94, 2511–2515 (1994).

    Article  CAS  Google Scholar 

  32. Huang, P.L. et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239–242 (1995).

    Article  CAS  Google Scholar 

  33. McLaughlin, M.G., Printz, M.P. & Jacob, H.J. Genetic dissection of cardiovascular startle response and hypertension in the spontaneously hypertensive rat. Circulation 92, 1–554 (1995).

    Article  Google Scholar 

  34. Gordon, R.D. Heterogeneous hypertension. Nature Genet. 11, 6–9 (1995).

    Article  CAS  Google Scholar 

  35. Scott, J. New chapter for the fat controller. Nature 379, 113–114 (1996).

    Article  CAS  Google Scholar 

  36. Todd, J.A. Transcribing diabetes. Nature 384, 407–408 (1996).

    Article  CAS  Google Scholar 

  37. Reaven, G.M., Hollenbeck, C., Jeng, C.-Y., Wu, M.S. & Ida Chen, Y.-D. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 37, 1020–1024 (1988).

    Article  CAS  Google Scholar 

  38. Martin, L.L. & Jensen, M.D. Effects of body fat distribution on regional lipolysis in obesity. J Clin. Invest. 88, 609–613 (1991).

    Article  CAS  Google Scholar 

  39. Castro Cabezas, M. et al. Impaired fatty acid metabolism in familial combined hyperlipidemia: a mechanism associating apolipoprotein B overproduction and insulin resistance. J Clin. Invest. 92, 160–168 (1993).

    Article  CAS  Google Scholar 

  40. Reynisdottir, S., Wahrenberg, H., Carlstrom, K., Rossner, S. & Arner, P. Catecholamine resistance in fat cells of women with upper-body obesity due to decreased expression of beta2-adrenoceptors. Diabetologia 37, 428–435 (1994).

    Article  CAS  Google Scholar 

  41. Reynisdottir, S., Eriksson, M., Angelin, B. & Arner, P. Impaired activation of adipocyte lipolysis in familial combined hyperlipidemia. J Clin. Invest. 95, 2161–2169 (1995).

    Article  CAS  Google Scholar 

  42. Aitman, T.J. et al. Defects of insulin action on fatty acid and carbohydrate metabolism in familial combined hyperlipidemia. Arterioscler. Thromb. Vase. Biol. 17, 748–754 (1997).

    Article  CAS  Google Scholar 

  43. Rodbell, M. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol. Chem. 239, 375–380 (1964).

    CAS  PubMed  Google Scholar 

  44. Simon, J.S. et al. Chromosomal mapping of the rat Slc4a family of anion exchanger genes, Ae1, Ae2, and Ae3. Mamm. Genome 7, 380–382 (1996).

    Article  CAS  Google Scholar 

  45. Paterson, A.H. et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335, 721–726 (1988).

    Article  CAS  Google Scholar 

  46. Belknap, J.K., Mitchell, S.R. OTool, L.A., Helms, M.L & Crabbe, J.C. Type I and type II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains. Behav. Genet. 26, 149–160 (1996).

    Article  CAS  Google Scholar 

  47. Kirkwood, T.B.L. Geometric means and measures of dispersion. Biometrics 35, 908–909 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Aitman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aitman, T., Gotoda, T., Evans, A. et al. Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat Genet 16, 197–201 (1997). https://doi.org/10.1038/ng0697-197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0697-197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing