Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Associative knowledge controls deployment of visual selective attention

Abstract

According to some models of visual selective attention, objects in a scene activate corresponding neural representations, which compete for perceptual awareness and motor behavior. During a visual search for a target object, top-down control exerted by working memory representations of the target's defining properties resolves competition in favor of the target. These models, however, ignore the existence of associative links among object representations. Here we show that such associations can strongly influence deployment of attention in humans. In the context of visual search, objects associated with the target were both recalled more often and recognized more accurately than unrelated distractors. Notably, both target and associated objects competitively weakened recognition of unrelated distractors and slowed responses to a luminance probe. Moreover, in a speeded search protocol, associated objects rendered search both slower and less accurate. Finally, the first saccades after onset of the stimulus array were more often directed toward associated than control items.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Verbal report experiment.
Figure 2: One exemplar of all object pairs used in the five experiments.
Figure 3: Forced-choice recency judgement experiment.
Figure 4: Rapid-presentation visual search experiment.

Similar content being viewed by others

References

  1. Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980).

    Article  CAS  Google Scholar 

  2. Bundesen, C. A theory of visual attention. Psychol. Rev. 97, 523–547 (1990).

    Article  CAS  Google Scholar 

  3. Treisman, A. & Gelade, G. A feature integration theory of attention. Cognit. Psychol. 12, 97–136 (1980).

    Article  CAS  Google Scholar 

  4. Posner, M.I. & Deheane, S. Attentional networks. Trends Neurosci. 7, 75–79 (1994).

    Article  Google Scholar 

  5. Van der Heiden, A.H.C. Selective Attention in Vision (Routledge, London, 1992).

    Google Scholar 

  6. LaBerge, D. Attentional Processing (Harvard Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  7. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  Google Scholar 

  8. Chelazzi, L., Miller, E.K., Duncan, J. & Desimone, R. A neural basis for visual search in inferior temporal cortex. Nature 363, 345–347 (1993).

    Article  CAS  Google Scholar 

  9. Luck, S.J., Chelazzi, L., Hillyard, S.A. & Desimone, R. Neural mechanisms of visual selective attention in in areas V1, V2 and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  10. Chelazzi, L., Duncan, J., Miller, E.K. & Desimone, R. Responses of neurons in inferior temporal cortex during memory-guided visual search. J. Neurophysiol. 80, 2918–2940 (1998).

    Article  CAS  Google Scholar 

  11. Reynolds, J.H., Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736–1753 (1999).

    Article  CAS  Google Scholar 

  12. Reynolds, J.H., Pasternak, T. & Desimone, R. Attention increases sensitivity of V4 neurons. Neuron 26, 703–714 (2000).

    Article  CAS  Google Scholar 

  13. Yantis, S. Control of visual attention. in Attention (ed. Pashler, H.) 223–256 (Univ. College London Press, London, 1998).

    Google Scholar 

  14. Hebb, D.O. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  15. Deese, J. The Structure of Associations in Language and Thought (Johns Hopkins Press, Baltimore, 1965).

    Google Scholar 

  16. Anderson, J.R. & Bower, G.H. Human Associative Memory (V.H. Winston, Washington, DC, 1973).

    Google Scholar 

  17. Collins, A.M. & Loftus, E.F. A spreading-activation theory of semantic processing. Psychol. Rev. 82, 407–428 (1975).

    Article  Google Scholar 

  18. McClelland, J.L. Connectionists models of memory. in The Oxford Handbook of Memory (eds. Tulving, E. & Craik, F.I.M.) 583–596 (Oxford Univ. Press, Oxford, UK, 2000).

    Google Scholar 

  19. Estes, W.K. Classification and Cognition (Oxford Univ. Press, New York, 1994).

    Book  Google Scholar 

  20. Duncan, J. & Humphreys, G. Visual search and stimulus similarity. Psychol. Rev. 96, 433–458 (1989).

    Article  CAS  Google Scholar 

  21. Downing, P.E. Interactions between visual working memory and selective attention. Psychol. Sci. 11, 467–473 (2000).

    Article  CAS  Google Scholar 

  22. Awh, E., Jonides, J. & Reuter-Lorenz, P. Rehearsal in spatial working memory. J. Exp. Psychol. Hum. Percept. Perform. 24, 780–790 (1998).

    Article  CAS  Google Scholar 

  23. Ishai, A. & Sagi, D. Common mechanisms of visual imagery and perception. Science 268, 1712–1774 (1995).

    Article  Google Scholar 

  24. Wolfe, J.M. Inattentional amnesia. in Fleeting Memories (ed. Coltheart, V.) (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  25. Sperling, G. The information available in brief visual presentations. Psychological Monographs 74, 1–29 (1960).

    Article  Google Scholar 

  26. Tulving, E. & Schacter, D.L. Priming and human memory systems. Science 247, 301–306 (1990).

    Article  CAS  Google Scholar 

  27. Findlay, J.M. Saccade target selection during visual search. Vision Res. 37, 617–631 (1997).

    Article  CAS  Google Scholar 

  28. Thorpe, S., Fize, D. & Marlot, C. Speed of processing in the human visual system. Nature 381, 520–522 (1996).

    Article  CAS  Google Scholar 

  29. Chun, M.M. Contextual cueing of visual attention. Trends Cogn. Sci. 4, 170–178 (2000).

    Article  CAS  Google Scholar 

  30. Chun, M.M. & Jiang, Y. Top-down attentional guidance based on implicit learning of visual covariation. Psychol. Sci. 10, 360–365 (1999).

    Article  Google Scholar 

  31. Henderson, J.M. & Hollingworth, A. High-level scene perception. Annu. Rev. Psychol. 50, 243–271 (1999).

    Article  CAS  Google Scholar 

  32. Biederman, I., Glass, A.L. & Stacy, E.W. Searching for objects in real-world scenes. J. Exp. Psychol. 97, 22–27 (1973).

    Article  CAS  Google Scholar 

  33. Palmer, S.E. The effects of contextual scenes on the identification of objects. Mem. Cognit. 3, 519–526 (1975).

    Article  CAS  Google Scholar 

  34. Friedman, A. Framing pictures: the role of knowledge in automatized encoding and memory for gist. J. Exp. Psychol. Gen. 108, 316–355 (1979).

    Article  CAS  Google Scholar 

  35. Biederman, I., Mezzanotte, R.J. & Rabinowitz, J.C. Scene perception: detecting and judging objects undergoing relational violations. Cognit. Psychol. 14, 143–177 (1982).

    Article  CAS  Google Scholar 

  36. Boyce, S.J., Pollastek, A. & Rayner, K. Effect of background information on object identification. J. Exp. Psychol. Hum. Percept. Perform. 15, 556–566 (1989).

    Article  CAS  Google Scholar 

  37. Hollingworth, A. & Henderson, J.M. Does consistent scene context facilitate object perception? J. Exp. Psychol. Gen. 127, 398–415 (1998).

    Article  CAS  Google Scholar 

  38. Humphreys, G.W., Riddoch, M.J. & Price, C.J. Top-down processes in object identification: evidence from experimental psychology, neuropsychology and functional anatomy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1275–1282 (1997).

    Article  CAS  Google Scholar 

  39. Parasuraman, R. & Martin, A. Interaction of semantic and perceptual processes in repetition blindness. Vis. Cognit. 8, 103–118 (2001).

    Article  Google Scholar 

  40. Butter, C.M. & Goodale, M.A. Visual search selectively enhances recognition of the search target. Vis. Cognit. 7, 769–784 (2000).

    Article  Google Scholar 

  41. Peterson, M.A. & Gibson, B.S. Shape recognition inputs to figure-ground organization in three-dimensional displays. Cognit. Psychol. 25, 383–429 (1993).

    Article  Google Scholar 

  42. Peterson, M.A. & Gibson, B.S. Object recognition contributions to figure-ground organization: operations on outlines and subjective contours. Percept. Psychophys. 56, 551–564 (1994).

    Article  CAS  Google Scholar 

  43. Peterson, M.A. & Kim, J.H. On what is bound in figures and grounds. Vis. Cognit. 8, 329–348 (2001).

    Article  Google Scholar 

  44. Glaser, W.R. Picture naming. Cognition 42, 61–105 (1992).

    Article  CAS  Google Scholar 

  45. Fodor, J.A. Modularity of Mind (MIT Press, Cambridge, Massachusetts, 1983).

    Google Scholar 

  46. Roediger, H.L. III & McDermott, K.B. Creating false memories: remembering words not presented in lists. J. Exp. Psychol. Learn. Mem. Cogn. 21, 803–814 (1995).

    Article  Google Scholar 

  47. Roediger, H.L. & McDermott, K.B. Implicit memory in normal human subjects. in Handbook of Neuropsychology Vol. 8 (eds. Boller, F. & Grafman, J.) 63–131 (Elsevier, Amsterdam, 1993).

    Google Scholar 

  48. Ochsner, K.N., Chiu, C.Y. & Schacter, D.L. Varieties of priming. Curr. Opin. Neurobiol. 4, 189–194 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this project was provided by grants to L.C. from the Human Frontier Science Program, the McDonnell-Pew Foundation, the Italian Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) and the Italian Consiglio Nazionale delle Ricerche (CNR). E.M. was supported by a Marie Curie Fellowship of the European Community programme “Improving Human Research Potential and the Socio-economic Knowledge Base” under contract number HPMFCT-2000-00562. We thank J. Duncan and M. Peterson for helpful comments on preliminary versions of this paper and M. Veronese for preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Chelazzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moores, E., Laiti, L. & Chelazzi, L. Associative knowledge controls deployment of visual selective attention. Nat Neurosci 6, 182–189 (2003). https://doi.org/10.1038/nn996

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn996

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing