Motivational activation: a unifying hypothesis of orexin/hypocretin function

Journal name:
Nature Neuroscience
Year published:
Published online


Orexins (hypocretins) are two peptides (orexin A and B) produced from the pre-pro-orexin precursor and expressed in a limited region of dorsolateral hypothalamus. Orexins were originally thought to specifically mediate feeding and promote wakefulness, but it is now clear that they participate in a wide range of behavioral and physiological processes under select circumstances. Orexins primarily mediate behavior under situations of high motivational relevance, such as during physiological need states, exposure to threats or reward opportunities. We hypothesize that many behavioral functions of orexins (including regulation of sleep/wake cycling) reflect a fundamentally integrated function for orexins in translating motivational activation into organized suites of psychological and physiological processes supporting adaptive behaviors. We also discuss how numerous forms of neural heterogeneity modulate this function, allowing orexin neurons to organize diverse, adaptive responses in a variety of motivationally relevant situations. Thus, the involvement of orexins in diverse behaviors may reflect a common underlying function for this peptide system.


  1. de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 95, 322327 (1998).
  2. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein–coupled receptors that regulate feeding behavior. Cell 92, 573585 (1998).
  3. Alexandre, C., Andermann, M.L. & Scammell, T.E. Control of arousal by the orexin neurons. Curr. Opin. Neurobiol. 23, 752759 (2013).
  4. Sakurai, T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat. Rev. Neurosci. 8, 171181 (2007).
  5. Kilduff, T.S. & Peyron, C. The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci. 23, 359365 (2000).
  6. Mignot, E. Sleep, sleep disorders and hypocretin (orexin). Sleep Med. 5 (suppl. 1), S2S8 (2004).
  7. Li, J., Hu, Z. & de Lecea, L. The hypocretins/orexins: integrators of multiple physiological functions. Br. J. Pharmacol. 171, 332350 (2014).
  8. Siegel, J.M. Narcolepsy: a key role for hypocretins (orexins). Cell 98, 409412 (1999).
  9. Fadel, J. & Burk, J.A. Orexin/hypocretin modulation of the basal forebrain cholinergic system: role in attention. Brain Res. 1314, 112123 (2010).
  10. Berridge, C.W., Espana, R.A. & Vittoz, N.M. Hypocretin/orexin in arousal and stress. Brain Res. 1314, 91102 (2010).
  11. Saper, C.B., Fuller, P.M., Pedersen, N.P., Lu, J. & Scammell, T.E. Sleep state switching. Neuron 68, 10231042 (2010).
  12. Mileykovskiy, B.Y., Kiyashchenko, L.I. & Siegel, J.M. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46, 787798 (2005).
  13. Lee, M.G., Hassani, O.K. & Jones, B.E. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J. Neurosci. 25, 67166720 (2005).
  14. Bromberg-Martin, E.S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive and alerting. Neuron 68, 815834 (2010).
  15. Aston-Jones, G. & Cohen, J.D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403450 (2005).
  16. Mochizuki, T. et al. Behavioral state instability in orexin knock-out mice. J. Neurosci. 24, 62916300 (2004).
  17. Bayard, S. & Dauvilliers, Y.A. Reward-based behaviors and emotional processing in human with narcolepsy-cataplexy. Front. Behav. Neurosci. 7, 50 (2013).
  18. Takahashi, K., Lin, J.S. & Sakai, K. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 153, 860870 (2008).
  19. Chase, M.H. A unified survival theory of the functioning of the hypocretinergic system. J. Appl. Physiol. 115, 954971 (2013).
  20. Wu, M.F., Nienhuis, R., Maidment, N., Lam, H.A. & Siegel, J.M. Cerebrospinal fluid hypocretin (orexin) levels are elevated by play but are not raised by exercise and its associated heart rate, blood pressure, respiration or body temperature changes. Arch. Ital. Biol. 149, 492498 (2011).
  21. Appelbaum, L. et al. Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Neuron 68, 8798 (2010).
  22. Thompson, J.L. & Borgland, S.L. A role for hypocretin/orexin in motivation. Behav. Brain Res. 217, 446453 (2011).
  23. Tsujino, N. & Sakurai, T. Role of orexin in modulating arousal, feeding and motivation. Front. Behav. Neurosci. 7, 28 (2013).
  24. Gao, X.B. & Horvath, T. Function and dysfunction of hypocretin/orexin: an energetics point of view. Annu. Rev. Neurosci. 37, 101116 (2014).
  25. Borbély, A.A. A two process model of sleep regulation. Hum. Neurobiol. 1, 195204 (1982).
  26. Zeitzer, J.M. et al. Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. J. Neurosci. 23, 35553560 (2003).
  27. Overeem, S., Lammers, G.J. & van Dijk, J.G. Cataplexy: 'tonic immobility' rather than 'REM-sleep atonia'? Sleep Med. 3, 471477 (2002).
  28. Oishi, Y. et al. Role of the medial prefrontal cortex in cataplexy. J. Neurosci. 33, 97439751 (2013).
  29. Burgess, C.R., Oishi, Y., Mochizuki, T., Peever, J.H. & Scammell, T.E. Amygdala lesions reduce cataplexy in orexin knock-out mice. J. Neurosci. 33, 97349742 (2013).
  30. Borgland, S.L. et al. Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J. Neurosci. 29, 1121511225 (2009).
  31. Harris, G.C., Wimmer, M. & Aston-Jones, G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437, 556559 (2005).
  32. Berthoud, H.R. & Munzberg, H. The lateral hypothalamus as integrator of metabolic and environmental needs: from electrical self-stimulation to opto-genetics. Physiol. Behav. 104, 2939 (2011).
  33. Burdakov, D., Karnani, M.M. & Gonzalez, A. Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol. Behav. 121, 117124 (2013).
  34. Cason, A.M. et al. Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol. Behav. 100, 419428 (2010).
  35. Sheng, Z., Santiago, A.M., Thomas, M.P. & Routh, V.H. Metabolic regulation of lateral hypothalamic glucose-inhibited orexin neurons may influence midbrain reward neurocircuitry. Mol. Cell. Neurosci. published online, doi:10.1016/j.mcn.2014.08.001 (6 August 2014).
  36. Mahler, S.V., Smith, R.J., Moorman, D.E., Sartor, G.C. & Aston-Jones, G. Multiple roles for orexin/hypocretin in addiction. Prog. Brain Res. 198, 79121 (2012).
  37. Yamanaka, A. et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38, 701713 (2003).
  38. Perello, M. et al. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol. Psychiatry 67, 880886 (2010).
  39. Calipari, E.S. & Espana, R.A. Hypocretin/orexin regulation of dopamine signaling: implications for reward and reinforcement mechanisms. Front. Behav. Neurosci. 6, 54 (2012).
  40. Mahler, S.V., Smith, R.J. & Aston-Jones, G. Interactions between VTA orexin and glutamate in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl.) 226, 687698 (2013).
  41. Yeoh, J.W., Campbell, E.J., James, M.H., Graham, B.A. & Dayas, C.V. Orexin antagonists for neuropsychiatric disease: progress and potential pitfalls. Front. Neurosci. 8, 36 (2014).
  42. Boutrel, B., Steiner, N. & Halfon, O. The hypocretins and the reward function: what have we learned so far? Front. Behav. Neurosci. 7, 59 (2013).
  43. Marchant, N.J., Millan, E.Z. & McNally, G.P. The hypothalamus and the neurobiology of drug seeking. Cell. Mol. Life Sci. 69, 581597 (2012).
  44. Kuwaki, T. & Zhang, W. Orexin neurons as arousal-associated modulators of central cardiorespiratory regulation. Respir. Physiol. Neurobiol. 174, 4354 (2010).
  45. Carrive, P. Orexin, orexin receptor antagonists and central cardiovascular control. Front. Neurosci. 7, 257 (2013).
  46. Johnson, P.L., Molosh, A., Fitz, S.D., Truitt, W.A. & Shekhar, A. Orexin, stress and anxiety/panic states. Prog. Brain Res. 198, 133161 (2012).
  47. Winsky-Sommerer, R. et al. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J. Neurosci. 24, 1143911448 (2004).
  48. Liu, R.J. & Aghajanian, G.K. Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc. Natl. Acad. Sci. USA 105, 359364 (2008).
  49. Salomon, R.M. et al. Diurnal variation of cerebrospinal fluid hypocretin-1 (Orexin-A) levels in control and depressed subjects. Biol. Psychiatry 54, 96104 (2003).
  50. Lutter, M. et al. Orexin signaling mediates the antidepressant-like effect of calorie restriction. J. Neurosci. 28, 30713075 (2008).
  51. James, M.H. et al. Exercise reverses the effects of early life stress on orexin cell reactivity in male but not female rats. Front. Behav. Neurosci. 8, 244 (2014).
  52. Tupone, D., Madden, C.J., Cano, G. & Morrison, S.F. An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J. Neurosci. 31, 1594415955 (2011).
  53. Wheeler, D.S. et al. Role of lateral hypothalamus in two aspects of attention in associative learning. Eur. J. Neurosci. 40, 23592377 (2014).
  54. Lambe, E.K., Olausson, P., Horst, N.K., Taylor, J.R. & Aghajanian, G.K. Hypocretin and nicotine excite the same thalamocortical synapses in prefrontal cortex: correlation with improved attention in rat. J. Neurosci. 25, 52255229 (2005).
  55. Muschamp, J.W. et al. Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc. Natl. Acad. Sci. USA 111, E1648E1655 (2014).
  56. Sears, R.M. et al. Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus. Proc. Natl. Acad. Sci. USA 110, 2026020265 (2013).
  57. Akbari, E., Naghdi, N. & Motamedi, F. Functional inactivation of orexin 1 receptors in CA1 region impairs acquisition, consolidation and retrieval in Morris water maze task. Behav. Brain Res. 173, 4752 (2006).
  58. Smith, R.J., See, R.E. & Aston-Jones, G. Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking. Eur. J. Neurosci. 30, 493503 (2009).
  59. Harris, G.C. & Aston-Jones, G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci. 29, 571577 (2006).
  60. Yoshida, K., McCormack, S., Espana, R.A., Crocker, A. & Scammell, T.E. Afferents to the orexin neurons of the rat brain. J. Comp. Neurol. 494, 845861 (2006).
  61. Deutch, A.Y. & Bubser, M. The orexins/hypocretins and schizophrenia. Schizophr. Bull. 33, 12771283 (2007).
  62. Chou, T.C. et al. Orexin (hypocretin) neurons contain dynorphin. J. Neurosci. 21, RC168 (2001).
  63. Kukkonen, J.P. & Leonard, C.S. Orexin/hypocretin receptor signaling cascades. Br. J. Pharmacol. 171, 314331 (2014).
  64. Schöne, C. & Burdakov, D. Glutamate and GABA as rapid effectors of hypothalamic “peptidergic” neurons. Front. Behav. Neurosci. 6, 81 (2012).
  65. Gao, X.B. & Horvath, T. Function and dysfunction of hypocretin/orexin: an energetics point of view. Annu. Rev. Neurosci. 37, 101116 (2014).
  66. Belle, M.D. et al. Acute suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock. J. Neurosci. 34, 36073621 (2014).
  67. Borgland, S.L., Ungless, M.A. & Bonci, A. Convergent actions of orexin/hypocretin and CRF on dopamine neurons: emerging players in addiction. Brain Res. 1314, 139144 (2010).
  68. Tabuchi, S. et al. Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function. J. Neurosci. 34, 64956509 (2014).
  69. Mahlios, J., De la Herran-Arita, A.K. & Mignot, E. The autoimmune basis of narcolepsy. Curr. Opin. Neurobiol. 23, 767773 (2013).
  70. Khatami, R., Birkmann, S. & Bassetti, C.L. Amygdala dysfunction in narcolepsy-cataplexy. J. Sleep Res. 16, 226229 (2007).
  71. Ponz, A. et al. Reduced amygdala activity during aversive conditioning in human narcolepsy. Ann. Neurol. 67, 394398 (2010).
  72. Morein-Zamir, S., Turner, D.C. & Sahakian, B.J. A review of the effects of modafinil on cognition in schizophrenia. Schizophr. Bull. 33, 12981306 (2007).
  73. Blouin, A.M. et al. Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction. Nat. Commun. 4, 1547 (2013).
  74. Siegel, J.M. et al. Neuronal activity in narcolepsy: identification of cataplexy-related cells in the medial medulla. Science 252, 13151318 (1991).

Download references

Author information


  1. Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA.

    • Stephen V Mahler,
    • David E Moorman,
    • Rachel J Smith,
    • Morgan H James &
    • Gary Aston-Jones
  2. Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA.

    • David E Moorman

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Additional data