Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Therapy development in spinal muscular atrophy

Abstract

Proximal spinal muscular atrophy (SMA) is the predominant form of motor neuron disease in children and young adults. In contrast to other neurodegenerative disorders, SMA is a genetically homozygous autosomal recessive disease that is caused by deficiency of the survival motor neuron (SMN) protein. This homogeneity should in principle facilitate therapy development. Previous therapy approaches have focused on upregulation of SMN expression from a second SMN (SMN2) gene that gives rise to low amounts of functional SMN protein. Drug development to target disease-specific mechanisms at cellular and physiological levels is in its early stages, as the pathophysiological processes that underlie the main disease symptoms are still not fully understood. Mouse models have helped to make conceptual progress in the disease mechanism, but their suitability in the search for therapeutic agents remains to be validated—an issue that is ubiquitous to the translational therapeutic research of other neurodegenerative diseases. Human induced pluripotent stem cell technology for generation of large numbers of human motor neurons could help to fill this gap and advance the power of drug screening. In parallel, advances in oligonucleotide technologies for engineering SMN2 pre-mRNA splicing are approaching their first clinical trials, whose success depends on improved technologies for drug delivery to motor neurons. If this obstacle can be overcome, this could boost therapy development, not only for SMA but also for other neurodegenerative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targets for therapy in SMA.
Figure 2: Axonal defects in Smn-deficient motor neurons.

Similar content being viewed by others

References

  1. Valdmanis, P.N., Daoud, H., Dion, P.A. & Rouleau, G.A. Recent advances in the genetics of amyotrophic lateral sclerosis. Curr. Neurol. Neurosci. Rep. 9, 198–205 (2009).

    Article  CAS  Google Scholar 

  2. Simpson, C.L. & Al-Chalabi, A. Amyotrophic lateral sclerosis as a complex genetic disease. Biochim. Biophys. Acta 1762, 973–985 (2006).

    Article  CAS  Google Scholar 

  3. Crawford, T.O. & Pardo, C.A. The neurobiology of childhood spinal muscular atrophy. Neurobiol. Dis. 3, 97–110 (1996).

    Article  CAS  Google Scholar 

  4. Burghes, A.H. & Beattie, C.E. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat. Rev. Neurosci. 10, 597–609 (2009).

    Article  CAS  Google Scholar 

  5. Rossoll, W. et al. Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum. Mol. Genet. 11, 93–105 (2002).

    Article  CAS  Google Scholar 

  6. Wirth, B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum. Mutat. 15, 228–237 (2000).

    Article  CAS  Google Scholar 

  7. Cartegni, L. & Krainer, A.R. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30, 377–384 (2002).

    Article  CAS  Google Scholar 

  8. Kashima, T. & Manley, J.L. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat. Genet. 34, 460–463 (2003).

    Article  CAS  Google Scholar 

  9. Mattis, V.B. et al. Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts. Hum. Genet. 120, 589–601 (2006).

    Article  CAS  Google Scholar 

  10. Cho, S. & Dreyfuss, G. A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev. 24, 438–442 (2010).

    Article  CAS  Google Scholar 

  11. Schrank, B. et al. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc. Natl. Acad. Sci. USA 94, 9920–9925 (1997).

    Article  CAS  Google Scholar 

  12. Jablonka, S., Schrank, B., Kralewski, M., Rossoll, W. & Sendtner, M. Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III. Hum. Mol. Genet. 9, 341–346 (2000).

    Article  CAS  Google Scholar 

  13. Monani, U.R. et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn−/− mice and results in a mouse with spinal muscular atrophy. Hum. Mol. Genet. 9, 333–339 (2000).

    Article  CAS  Google Scholar 

  14. Rossoll, W. et al. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J. Cell Biol. 163, 801–812 (2003).

    Article  CAS  Google Scholar 

  15. McWhorter, M.L., Monani, U.R., Burghes, A.H. & Beattie, C.E. Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. J. Cell Biol. 162, 919–931 (2003).

    Article  CAS  Google Scholar 

  16. Kong, L. et al. Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J. Neurosci. 29, 842–851 (2009).

    Article  CAS  Google Scholar 

  17. Jablonka, S., Beck, M., Lechner, B.D., Mayer, C. & Sendtner, M. Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy. J. Cell Biol. 179, 139–149 (2007).

    Article  CAS  Google Scholar 

  18. Le, T.T. et al. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum. Mol. Genet. 14, 845–857 (2005).

    Article  CAS  Google Scholar 

  19. Jedrzejowska, M. et al. Unaffected patients with a homozygous absence of the SMN1 gene. Eur. J. Hum. Genet. 16, 930–934 (2008).

    Article  CAS  Google Scholar 

  20. Jarecki, J. et al. Diverse small-molecule modulators of SMN expression found by high-throughput compound screening: early leads towards a therapeutic for spinal muscular atrophy. Hum. Mol. Genet. 14, 2003–2018 (2005).

    Article  CAS  Google Scholar 

  21. Marks, P.A., Richon, V.M., Miller, T. & Kelly, W.K. Histone deacetylase inhibitors. Adv. Cancer Res. 91, 137–168 (2004).

    Article  CAS  Google Scholar 

  22. Chang, J.G. et al. Treatment of spinal muscular atrophy by sodium butyrate. Proc. Natl. Acad. Sci. USA 98, 9808–9813 (2001).

    Article  CAS  Google Scholar 

  23. Sumner, C.J. et al. Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann. Neurol. 54, 647–654 (2003).

    Article  CAS  Google Scholar 

  24. Avila, A.M. et al. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J. Clin. Invest. 117, 659–671 (2007).

    Article  CAS  Google Scholar 

  25. Tsai, L.K., Tsai, M.S., Lin, T.B., Hwu, W.L. & Li, H. Establishing a standardized therapeutic testing protocol for spinal muscular atrophy. Neurobiol. Dis. 24, 286–295 (2006).

    Article  CAS  Google Scholar 

  26. Swoboda, K.J. et al. Phase II open label study of valproic acid in spinal muscular atrophy. PLoS ONE 4, e5268 (2009).

    Article  Google Scholar 

  27. Garbes, L. et al. LBH589 induces up to 10-fold SMN protein levels by several independent mechanisms and is effective even in cells from SMA patients non-responsive to valproate. Hum. Mol. Genet. 18, 3645–3658 (2009).

    Article  CAS  Google Scholar 

  28. Butchbach, M.E. et al. Effects of 2,4-diaminoquinazoline derivatives on SMN expression and phenotype in a mouse model for spinal muscular atrophy. Hum. Mol. Genet. 19, 454–467 (2010).

    Article  CAS  Google Scholar 

  29. Rak, K. et al. Valproic acid blocks excitability in SMA type I mouse motor neurons. Neurobiol. Dis. 36, 477–487 (2009).

    Article  CAS  Google Scholar 

  30. Artsma-Rus, A. & van Ommen, G.J. Progress in therapeutic antisense applications for neuromuscular disorders. Eur. J. Hum. Genet. 18, 146–153 (2010).

    Article  Google Scholar 

  31. Pan, W.H. & Clawson, G.A. Antisense applications for biological control. J. Cell. Biochem. 98, 14–35 (2006).

    Article  CAS  Google Scholar 

  32. van Deutekom, J.C. et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N. Engl. J. Med. 357, 2677–2686 (2007).

    Article  CAS  Google Scholar 

  33. Goyenvalle, A. et al. Rescue of dystrophic muscle through U7 small nuclear RNA-mediated exon skipping. Science 306, 1796–1799 (2004).

    Article  CAS  Google Scholar 

  34. Khoo, B. & Krainer, A.R. Splicing therapeutics in SMN2 and APOB. Curr. Opin. Mol. Ther. 11, 108–115 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zaiss, A.K. & Muruve, D.A. Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Ther. 15, 808–816 (2008).

    Article  CAS  Google Scholar 

  36. Meyer, K. et al. Rescue of a severe mouse model for spinal muscular atrophy by U7 small nuclear RNA-mediated splicing modulation. Hum. Mol. Genet. 18, 546–555 (2009).

    Article  CAS  Google Scholar 

  37. Hua, Y., Vickers, T.A., Okunola, H.L., Bennett, C.F. & Krainer, A.R. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am. J. Hum. Genet. 82, 834–848 (2008).

    Article  CAS  Google Scholar 

  38. Singh, N.N., Singh, R.N. & Androphy, E.J. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 35, 371–389 (2007).

    Article  CAS  Google Scholar 

  39. Hua, Y., Vickers, T.A., Baker, B.F., Bennett, C.F. & Krainer, A.R. Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol. 5, e73 (2007).

    Article  Google Scholar 

  40. Ralph, G.S. et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat. Med. 11, 429–433 (2005).

    Article  CAS  Google Scholar 

  41. Azzouz, M. et al. Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J. Clin. Invest. 114, 1726–1731 (2004).

    Article  CAS  Google Scholar 

  42. Towne, C., Raoul, C., Schneider, B.L. & Aebischer, P. Systemic AAV6 delivery mediating RNA interference against SOD1: neuromuscular transduction does not alter disease progression in fALS mice. Mol. Ther. 16, 1018–1025 (2008).

    Article  CAS  Google Scholar 

  43. Foust, K.D. et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat. Biotechnol. 28, 271–274 (2010).

    Article  CAS  Google Scholar 

  44. Passini, M.A. et al. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J. Clin. Invest. 120, 1253–1264 (2010).

    Article  CAS  Google Scholar 

  45. Towne, C., Schneider, B.L., Kieran, D., Redmond, D.E. Jr. & Aebischer, P. Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Ther. 17, 141–146 (2010).

    Article  CAS  Google Scholar 

  46. Foust, K.D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    Article  CAS  Google Scholar 

  47. Thoenen, H. & Sendtner, M. Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat. Neurosci. 5 (suppl.), 1046–1050 (2002).

    Article  CAS  Google Scholar 

  48. Storkebaum, E., Lambrechts, D. & Carmeliet, P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays 26, 943–954 (2004).

    Article  CAS  Google Scholar 

  49. Dimos, J.T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    Article  CAS  Google Scholar 

  50. Ebert, A.D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277–280 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank R. Blum and R. Götz for critical reading and many helpful comments. Work in my laboratory on spinal muscular atrophy was supported by the SMA Foundation, the Hermann und Lilly Schilling Stiftung im Stifterverband der Deutschen Industrie and the Deutsche Forschungsgemeinschaft, grant SFB 581, B1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sendtner.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sendtner, M. Therapy development in spinal muscular atrophy. Nat Neurosci 13, 795–799 (2010). https://doi.org/10.1038/nn.2565

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2565

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing