Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments

Abstract

Primates base perceptual judgments on some sensory inputs while ignoring others. The covert selection of sensory information for perception is often thought to be accomplished mostly by the cerebral cortex, whereas the overt orienting toward relevant stimuli involves various additional structures such as the superior colliculus, a subcortical region involved in the control of eye movements. Contrary to this view, we show that the superior colliculus is necessary for determining which stimuli will inform perceptual judgments, even in the absence of orienting movements. Reversible inactivation of the superior colliculus in monkeys performing a motion discrimination task caused profound inattention for stimuli in the affected visual field, but only when distracters containing counterinformative signals appeared in the unaffected field. When distracting stimuli contained no information, discrimination performance was largely unaffected. Thus, the superior colliculus is a bottleneck in the covert selection of signals for perceptual judgments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective attention task design.
Figure 2: Map of inactivation effects.
Figure 3: Sample data from one inactivation session.
Figure 4: Summary results from inactivation sessions in saccade-response version of the task.
Figure 5: Summary results from inactivation sessions in button-press version of the task.
Figure 6: The effects of SC inactivation on local motion discrimination.
Figure 7: Impairments in selective attention after SC inactivation required the presence of a foil signal.

Similar content being viewed by others

References

  1. Wurtz, R.H. & Albano, J.E. Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci. 3, 189–226 (1980).

    Article  CAS  Google Scholar 

  2. Sparks, D.L. Conceptual issues related to the role of the superior colliculus in the control of gaze. Curr. Opin. Neurobiol. 9, 698–707 (1999).

    Article  CAS  Google Scholar 

  3. McPeek, R.M. & Keller, E.L. Deficits in saccade target selection after inactivation of superior colliculus. Nat. Neurosci. 7, 757–763 (2004).

    Article  CAS  Google Scholar 

  4. Carello, C.D. & Krauzlis, R.J. Manipulating intent: evidence for a causal role of the superior colliculus in target selection. Neuron 43, 575–583 (2004).

    Article  CAS  Google Scholar 

  5. Heilman, K.M. Intentional neglect. Front. Biosci. 9, 694–705 (2004).

    Article  Google Scholar 

  6. Sprague, J.M. Interaction of cortex and superior colliculus in mediation of visually guided behavior in cat. Science 153, 1544–1547 (1966).

    Article  CAS  Google Scholar 

  7. Corbetta, M. & Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  Google Scholar 

  8. Driver, J. & Mattingley, J.B. Parietal neglect and visual awareness. Nat. Neurosci. 1, 17–22 (1998).

    Article  CAS  Google Scholar 

  9. Mort, D.J. et al. The anatomy of visual neglect. Brain 126, 1986–1997 (2003).

    Article  Google Scholar 

  10. Corbetta, M., Kincade, M.J., Lewis, C., Snyder, A.Z. & Sapir, A. Neural basis and recovery of spatial attention deficits in spatial neglect. Nat. Neurosci. 8, 1603–1610 (2005).

    Article  CAS  Google Scholar 

  11. Wardak, C., Ibos, G., Duhamel, J. & Olivier, E. Contribution of the monkey frontal eye field to covert visual attention. J. Neurosci. 26, 4228–4235 (2006).

    Article  CAS  Google Scholar 

  12. Moore, T. & Armstrong, K.M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003).

    Article  CAS  Google Scholar 

  13. Moore, T. & Fallah, M. Control of eye movements and spatial attention. Proc. Natl. Acad. Sci. USA 98, 1273–1276 (2001).

    Article  CAS  Google Scholar 

  14. Snyder, L.H., Batista, A.P. & Andersen, R.A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  CAS  Google Scholar 

  15. Bisley, J.W. & Goldberg, M.E. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299, 81–86 (2003).

    Article  CAS  Google Scholar 

  16. Gold, J.I. & Shadlen, M.N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  Google Scholar 

  17. Kustov, A.A. & Robinson, D.L. Shared neural control of attentional shifts and eye movements. Nature 384, 74–77 (1996).

    Article  CAS  Google Scholar 

  18. Ignashchenkova, A., Dicke, P.W., Haarmeier, T. & Thier, P. Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nat. Neurosci. 7, 56–64 (2004).

    Article  CAS  Google Scholar 

  19. Cavanaugh, J. & Wurtz, R.H. Subcortical modulation of attention counters change blindness. J. Neurosci. 24, 11236–11243 (2004).

    Article  CAS  Google Scholar 

  20. Müller, J.R., Philiastides, M.G. & Newsome, W.T. Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc. Natl. Acad. Sci. USA 102, 524–529 (2005).

    Article  Google Scholar 

  21. Quaia, C., Aizawa, H., Optican, L.M. & Wurtz, R.H. Reversible inactivation of monkey superior colliculus. II. Maps of saccadic deficits. J. Neurophysiol. 79, 2097–2110 (1998).

    Article  CAS  Google Scholar 

  22. McCullah, P. & Nelder, J. Generalized Linear Models (Chapman & Hall, New York, 1990).

  23. Halligan, P. & Marshall, J. Toward a principled explanation of unilateral neglect. Cogn. Neuropsychol. 11, 167–206 (1994).

    Article  Google Scholar 

  24. Joanette, Y. & Brouchon, M. Visual allesthesia in manual pointing—some evidence for a sensorimotor cerebral organization. Brain Cogn. 3, 152–165 (1984).

    Article  CAS  Google Scholar 

  25. Goldberg, M.E. & Wurtz, R.H. Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. J. Neurophysiol. 35, 560–574 (1972).

    Article  CAS  Google Scholar 

  26. Posner, M.I. & Petersen, S.E. The attention system of the human brain. Annu. Rev. Neurosci. 13, 25–42 (1990).

    Article  CAS  Google Scholar 

  27. Fecteau, J.H., Bell, A.H. & Munoz, D.P. Neural correlates of the automatic and goal-driven biases in orienting spatial attention. J. Neurophysiol. 92, 1728–1737 (2004).

    Article  Google Scholar 

  28. Reynolds, J.H. & Chelazzi, L. Attentional modulation of visual processing. Annu. Rev. Neurosci. 27, 611–647 (2004).

    Article  CAS  Google Scholar 

  29. Cook, E.P. & Maunsell, J.H.R. Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J. Neurosci. 22, 1994–2004 (2002).

    Article  CAS  Google Scholar 

  30. Yeshurun, Y. & Carrasco, M. Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396, 72–75 (1998).

    Article  CAS  Google Scholar 

  31. Luck, S.J., Chelazzi, L., Hillyard, S.A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  32. Williford, T. Effects of spatial attention on contrast response functions in macaque area V4. J. Neurophysiol. 96, 40–54 (2006).

    Article  Google Scholar 

  33. Rafal, R.D. Neglect. Curr. Opin. Neurobiol. 4, 231–236 (1994).

    Article  CAS  Google Scholar 

  34. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  Google Scholar 

  35. Reynolds, J.H., Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736–1753 (1999).

    Article  CAS  Google Scholar 

  36. Reynolds, J.H. & Heeger, D.J. The normalization model of attention. Neuron 61, 168–185 (2009).

    Article  CAS  Google Scholar 

  37. De Weerd, P., Desimone, R. & Ungerleider, L.G. Generalized deficits in visual selective attention after V4 and TEO lesions in macaques. Eur. J. Neurosci. 18, 1671–1691 (2003).

    Article  Google Scholar 

  38. Rossi, A.F., Bichot, N.P., Desimone, R. & Ungerleider, L.G. Top down attentional deficits in macaques with lesions of lateral prefrontal cortex. J. Neurosci. 27, 11306–11314 (2007).

    Article  CAS  Google Scholar 

  39. Treue, S. & Maunsell, J. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  CAS  Google Scholar 

  40. Berman, R. & Wurtz, R. Exploring the pulvinar path to visual cortex. Prog. Brain Res. 171, 467–473 (2008).

    Article  Google Scholar 

  41. Rodman, H.R., Gross, C.G. & Albright, T.D. Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal. J. Neurosci. 10, 1154–1164 (1990).

    Article  CAS  Google Scholar 

  42. Law, C.-T. & Gold, J.I. Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nat. Neurosci. 11, 505–513 (2008).

    Article  CAS  Google Scholar 

  43. Dosher, B.A. & Lu, Z.L. Mechanisms of perceptual attention in precuing of location. Vision Res. 40, 1269–1292 (2000).

    Article  CAS  Google Scholar 

  44. Chen, L.L., Goffart, L. & Sparks, D.L. A simple method for constructing microinjectrodes for reversible inactivation in behaving monkeys. J. Neurosci. Methods 107, 81–85 (2001).

    Article  CAS  Google Scholar 

  45. Hafed, Z.M., Goffart, L. & Krauzlis, R.J. Superior colliculus inactivation causes stable offsets in eye position during tracking. J. Neurosci. 28, 8124–8137 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Boehle and N. Dill for technical assistance. This work was supported by the Simons Foundation (R.J.K.), the Institute for Neural Computation (L.P.L.) and an Aginsky Scholars Award (L.P.L.).

Author information

Authors and Affiliations

Authors

Contributions

L.P.L. and R.J.K. designed and conducted the experiments and wrote the manuscript. L.P.L. analyzed the data.

Corresponding author

Correspondence to Lee P Lovejoy.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Tables 1–3 (PDF 523 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovejoy, L., Krauzlis, R. Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments. Nat Neurosci 13, 261–266 (2010). https://doi.org/10.1038/nn.2470

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2470

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing