Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation

Abstract

Memory reconsolidation has been demonstrated in various tasks and species, suggesting it is a fundamental process. However, there are experimental parameters that can inhibit reconsolidation from occurring (boundary conditions). These conditions and their mechanisms remain poorly defined. Here, we characterize the ability of strong training to inhibit reconsolidation at the behavioral, systems and molecular levels. We demonstrate that strong memories in rats initially are resistant to reconsolidation, but after sufficient time will undergo reconsolidation, suggesting that boundary conditions can be transient. At the systems level, we show that the hippocampus is necessary for inhibiting reconsolidation in the amygdala. At the molecular level, we demonstrate that NR2B NMDA-receptor subunits which are critical for the induction of reconsolidation of auditory memories in the amygdala, are downregulated only under conditions when strong memories do not undergo reconsolidation. This suggests that one molecular mechanism for mediating boundary conditions is through downregulation of reconsolidation induction mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strong auditory fear memories are insensitive to anisomycin 2 d after training.
Figure 2: Alternative reactivation protocols are not sufficient to make the strong auditory fear memories sensitive to anisomycin.
Figure 3: Strong memories undergo reconsolidation at 30 and 60 d, but not 7 d, after training.
Figure 4: Pretraining dorsal hippocampus lesions cause strong fear memory to undergo reconsolidation in the LBA.
Figure 5: NR2B-subunit abundance is inversely related to the ability of strong memories to undergo reconsolidation over time.
Figure 6: Pretraining dorsal hippocampus lesions prevent the downregulation of NR2B in strongly trained rats.

Similar content being viewed by others

References

  1. Müller, G.E. & Pilzecker, A. Experimentelle Beitrage zur Lehre vom Gedachtnis [Experimental contributions to the theory of memory]. Z. Psychol. Erganzungsband (Z. Psychol. suppl.) 1 1:300 (1900).

  2. Misanin, J.R., Miller, R.R. & Lewis, D.J. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160, 554–555 (1968).

    Article  CAS  Google Scholar 

  3. Schneider, A.M. & Sherman, W. Amnesia: a function of the temporal relation of footshock to electroconvulsive shock. Science 159, 219–221 (1968).

    Article  CAS  Google Scholar 

  4. Alberini, C.M. Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci. 28, 51–56 (2005).

    Article  CAS  Google Scholar 

  5. Nader, K., Schafe, G.E. & LeDoux, J.E. The labile nature of consolidation theory. Nat. Rev. Neurosci. 1, 216–219 (2000).

    Article  CAS  Google Scholar 

  6. Dudai, Y. Reconsolidation: the advantage of being refocused. Curr. Opin. Neurobiol. 16, 174–178 (2006).

    Article  CAS  Google Scholar 

  7. Sara, S.J. Retrieval and reconsolidation: toward a neurobiology of remembering. Learn. Mem. 7, 73–84 (2000).

    Article  CAS  Google Scholar 

  8. Nader, K. & Hardt, O. A single standard for memory: the case for reconsolidation. Nat. Rev. Neurosci. 10, 224–234 (2009).

    Article  CAS  Google Scholar 

  9. Eisenberg, M., Kobilo, T., Berman, D.E. & Dudai, Y. Stability of retrieved memory: inverse correlation with trace dominance. Science 301, 1102–1104 (2003).

    Article  CAS  Google Scholar 

  10. Nader, K. Memory traces unbound. Trends Neurosci. 26, 65–72 (2003).

    Article  CAS  Google Scholar 

  11. Pedreira, M.E. & Maldonado, H. Protein synthesis subserves reconsolidation or extinction depending on reminder duration. Neuron 38, 863–869 (2003).

    Article  CAS  Google Scholar 

  12. Suzuki, A. et al. Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J. Neurosci. 24, 4787–4795 (2004).

    Article  CAS  Google Scholar 

  13. Milekic, M.H. & Alberini, C.M. Temporally graded requirement for protein synthesis following memory reactivation. Neuron 36, 521–525 (2002).

    Article  CAS  Google Scholar 

  14. Debiec, J., Doyere, V., Nader, K. & Ledoux, J.E. Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala. Proc. Natl. Acad. Sci. USA 103, 3428–3433 (2006).

    Article  CAS  Google Scholar 

  15. Stollhoff, N., Menzel, R. & Eisenhardt, D. Spontaneous recovery from extinction depends on the reconsolidation of the acquisition memory in an appetitive learning paradigm in the honeybee (Apis mellifera). J. Neurosci. 25, 4485–4492 (2005).

    Article  CAS  Google Scholar 

  16. Duvarci, S., Mamou, C.B. & Nader, K. Extinction is not a sufficient condition to prevent fear memories from undergoing reconsolidation in the basolateral amygdala. Eur. J. Neurosci. 24, 249–260 (2006).

    Article  Google Scholar 

  17. Debiec, J., LeDoux, J.E. & Nader, K. Cellular and systems reconsolidation in the hippocampus. Neuron 36, 527–538 (2002).

    Article  CAS  Google Scholar 

  18. Lee, J.L., Di Ciano, P., Thomas, K.L. & Everitt, B.J. Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 47, 795–801 (2005).

    Article  CAS  Google Scholar 

  19. Debiec, J. & Ledoux, J.E. Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129, 267–272 (2004).

    Article  CAS  Google Scholar 

  20. DeVietti, T.L. & Holliday, J.H. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace: a replication. Psychon. Sci. 29, 137–138 (1972).

    Article  Google Scholar 

  21. Bozon, B., Davis, S. & Laroche, S. A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40, 695–701 (2003).

    Article  CAS  Google Scholar 

  22. Przybyslawski, J., Roullet, P. & Sara, S.J. Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors. J. Neurosci. 19, 6623–6628 (1999).

    Article  CAS  Google Scholar 

  23. Kim, J.J. & Fanselow, M.S. Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992).

    Article  CAS  Google Scholar 

  24. Ben Mamou, C., Gamache, K. & Nader, K. NMDA receptors are critical for unleashing consolidated auditory fear memories. Nat. Neurosci. 9, 1237–1239 (2006).

    Article  CAS  Google Scholar 

  25. Blanchard, R.J. & Blanchard, D.C. Crouching as an index of fear. J. Comp. Physiol. Psychol. 67, 370–375 (1969).

    Article  CAS  Google Scholar 

  26. Rudy, J.W., Biedenkapp, J.C., Moineau, J. & Bolding, K. Anisomycin and the reconsolidation hypothesis. Learn. Mem. 13, 1–3 (2006).

    Article  CAS  Google Scholar 

  27. Duvarci, S. & Nader, K. Characterization of fear memory reconsolidation. J. Neurosci. 24, 9269–9275 (2004).

    Article  CAS  Google Scholar 

  28. Frankland, P.W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).

    Article  CAS  Google Scholar 

  29. Frankland, P.W., Bontempi, B., Talton, L.E., Kaczmarek, L. & Silva, A.J. The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304, 881–883 (2004).

    Article  CAS  Google Scholar 

  30. Zola-Morgan, S.M. & Squire, L.R. The primate hippocampal formation: evidence for a time-limited role in memory storage. Science 250, 288–290 (1990).

    Article  CAS  Google Scholar 

  31. Blanchard, D.C., Blanchard, R.J. & Fukunaga, K.K. Environmental control of defensive reactions to footshock. Bull. Psychon. Soc. 8, 129–130 (1976).

    Article  Google Scholar 

  32. McDonald, A.J. Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 55, 257–332 (1998).

    Article  CAS  Google Scholar 

  33. Pitkanen, A., Pikkarainen, M., Nurminen, N. & Ylinen, A. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat: a review. Ann. NY Acad. Sci. 911, 369–391 (2000).

    Article  CAS  Google Scholar 

  34. Richter-Levin, G. & Akirav, I. Amygdala-hippocampus dynamic interaction in relation to memory. Mol. Neurobiol. 22, 11–20 (2000).

    Article  CAS  Google Scholar 

  35. Zinebi, F. et al. NMDA currents and receptor protein are downregulated in the amygdala during maintenance of fear memory. J. Neurosci. 23, 10283–10291 (2003).

    Article  CAS  Google Scholar 

  36. Morris, R.G. et al. Memory reconsolidation: sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval. Neuron 50, 479–489 (2006).

    Article  CAS  Google Scholar 

  37. Fanselow, M.S. & Gale, G.D. The amygdala, fear, and memory. Ann. NY Acad. Sci. 985, 125–134 (2003).

    Article  Google Scholar 

  38. Schafe, G.E., Nader, K., Blair, H.T. & LeDoux, J.E. Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci. 24, 540–546 (2001).

    Article  CAS  Google Scholar 

  39. Maren, S. Neurotoxic basolateral amygdala lesions impair learning and memory but not the performance of conditional fear in rats. J. Neurosci. 19, 8696–8703 (1999).

    Article  CAS  Google Scholar 

  40. Reijmers, L.G., Perkins, B.L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007).

    Article  CAS  Google Scholar 

  41. Phillips, R.G. & LeDoux, J.E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285 (1992).

    Article  CAS  Google Scholar 

  42. Ambrogi Lorenzini, C.G., Baldi, E., Bucherelli, C., Sacchetti, B. & Tassoni, G. Neural topography and chronology of memory consolidation: a review of functional inactivation findings. Neurobiol. Learn. Mem. 71, 1–18 (1999).

    Article  CAS  Google Scholar 

  43. Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A. & Rosenbaum, R.S. The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr. Opin. Neurobiol. 16, 179–190 (2006).

    Article  CAS  Google Scholar 

  44. Turrigiano, G.G. & Nelson, S.B. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000).

    Article  CAS  Google Scholar 

  45. Franks, K.M. & Isaacson, J.S. Synapse-specific downregulation of NMDA receptors by early experience: a critical period for plasticity of sensory input to olfactory cortex. Neuron 47, 101–114 (2005).

    Article  CAS  Google Scholar 

  46. Joshi, I. & Wang, L.Y. Developmental profiles of glutamate receptors and synaptic transmission at a single synapse in the mouse auditory brainstem. J. Physiol. (Lond.) 540, 861–873 (2002).

    Article  CAS  Google Scholar 

  47. Suzuki, A., Mukawa, T., Tsukagoshi, A., Frankland, P.W. & Kida, S. Activation of LVGCCs and CB1 receptors required for destabilization of reactivated contextual fear memories. Learn. Mem. 15, 426–433 (2008).

    Article  CAS  Google Scholar 

  48. Milton, A.L., Lee, J.L., Butler, V.J., Gardner, R. & Everitt, B.J. Intra-amygdala and systemic antagonism of NMDA receptors prevents the reconsolidation of drug-associated memory and impairs subsequently both novel and previously acquired drug-seeking behaviors. J. Neurosci. 28, 8230–8237 (2008).

    Article  CAS  Google Scholar 

  49. Lee, S.H. et al. Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319, 1253–1256 (2008).

    Article  CAS  Google Scholar 

  50. Lengyel, I. et al. Autonomous activity of CaMKII is only transiently increased following the induction of long-term potentiation in the rat hippocampus. Eur J. Neurosci. 20, 3063–3072 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Kusher for detailed suggestions and comments on the manuscript. We thank various people in the lab who have helped us with these experiments. L.d.O.A. was supported by the Brazilian Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. The study was supported by Natural Sciences and Engineering Research Council (Canada), Canadian Institutes of Health Research, Canada Foundation for Innovation, Volkswagen Foundation and E.W.R. Steacie Memorial Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.N. and S.-H.W. designed and developed this study. S.-H.W. conducted the behavioral, pharmacological, lesion and immunohistochemical experiments, performed the statistical and histological analyses and wrote the paper with K.N. L.d.O.A. conducted the western blot and lesion with extinction experiments and performed related data analyses. K.N. supervised this project.

Corresponding author

Correspondence to Karim Nader.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 889 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SH., de Oliveira Alvares, L. & Nader, K. Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nat Neurosci 12, 905–912 (2009). https://doi.org/10.1038/nn.2350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing