Articles

Filter By:

  • Quantum communication promises important advances in information and communication technology, yet it suffers from alignment sensitivity. Here, an alignment-free approach is demonstrated using liquid crystal devices, allowing for broader applications, including satellites.

    • Vincenzo D'Ambrosio
    • Eleonora Nagali
    • Fabio Sciarrino
    ArticleOpen Access
  • Molecular systems with rigid macrocyclic backbones self-assemble into synthetic nanopores that mimic the mass-transport characteristics of biological channels. Zhouet al. produce self-assembling hydrophobic nanopores that mediate highly selective transmembrane ion transport and highly efficient transmembrane water permeability.

    • Xibin Zhou
    • Guande Liu
    • Bing Gong
    Article
  • In uteroelectroporation allows the labelling of specific populations of neurons in the developing mouse brain. The authors of this paper present a simple modification of this method that increases labelling efficiency and allows, for the first time, transfection of Purkinje cells in the rat cerebellum.

    • Marco dal Maschio
    • Diego Ghezzi
    • Laura Cancedda
    ArticleOpen Access
  • Vortex–charge duality is a model that has been proposed for describing the superconducting to insulator transition in disordered thin films. Mehtaet al. report experimental evidence for this duality in the two-dimensional electron gas that arises in LaAlO3/SrTiO3heterostructures.

    • M.M. Mehta
    • D.A. Dikin
    • V. Chandrasekhar
    Article
  • The motor protein myosin-V transports cargo along actin filaments, but the biophysical mechanisms by which myosin-V generates force are unclear. Here, optical tweezers and a DNA handle are used to study the forces generated by myosin-V: the mechanism of force generation is found to depend on the load applied.

    • Keisuke Fujita
    • Mitsuhiro Iwaki
    • Toshio Yanagida
    ArticleOpen Access
  • X-ray free-electron lasers offer a wealth of possibilities for future diffraction studies, but variations in successive pulses mean the wavefront is not well defined. Rutishauseret al. use grating interferometry to characterize the wavefronts shot to shot, both in situand under operating conditions.

    • Simon Rutishauser
    • Liubov Samoylova
    • Christian David
    Article
  • The iron pnictides are a class of superconductors that have received widespread interest in recent years. By doping the prototypical material LaFeAsO with hydrogen, this study reveals the existence of a second superconducting dome at higher doping ranges, which arises due to orbital fluctuations.

    • Soshi Iimura
    • Satoru Matsuishi
    • Hideo Hosono
    ArticleOpen Access
  • The clustered regularly interspaced short palindromic repeats (CRISPR) system protects prokaryotes from foreign DNA. Here, bacteriophage DNA containing mutations that can circumvent this response are shown to be incorporated into the CRISPR locus, allowing bacteria to remember previous infections in an adaptive manner.

    • Kirill A. Datsenko
    • Ksenia Pougach
    • Ekaterina Semenova
    ArticleOpen Access
  • Chiral metamaterials present interesting ways to manipulate and distinguish between different circular polarizations of light. Zhanget al. realize chiral metamaterials that exhibit photoinduced switching between left- and right-handed circular polarization interactions at terahertz frequencies.

    • Shuang Zhang
    • Jiangfeng Zhou
    • Xiang Zhang
    Article
  • Single electron pumps have been proposed as potential candidates for redefining the ampere. This study reports measurements of the quantized current flowing through a semiconductor electron pump with a precision that makes a substantial step towards establishing a direct metric for electrical currents.

    • S.P. Giblin
    • M. Kataoka
    • D.A. Ritchie
    Article
  • The ability to manipulate single charges is a key requisite for novel nanoelectronic devices. Allenet al. show how to electrostatically confine electrons in suspended bilayer graphene quantum dots by local control of the graphene band structure.

    • M. T. Allen
    • J. Martin
    • A. Yacoby
    Article
  • The SrTiO3/LaAlO3 system is widely studied because it forms a two-dimensional electron gas at the interface. This study investigates the effects of diluting the LaAlO3 layer with SrTiO3, and finds that the threshold thickness required for the onset of conductivity scales inversely with the fraction of LaAlO3, suggesting an intrinsic origin for the electron gas.

    • M.L. Reinle-Schmitt
    • C. Cancellieri
    • P.R. Willmott
    Article
  • Switches made up of single molecules form the basis for the concept of molecular electronics. Miyamachiet al.demonstrate that an iron-based spin crossover molecule can be switched between different spin states, provided it is decoupled from a metallic substrate by a thin insulating layer.

    • Toshio Miyamachi
    • Manuel Gruber
    • Wulf Wulfhekel
    ArticleOpen Access
  • Absorption imaging relies on the capture of photons by an object to create intensity contrasts, allowing for the visualization of small quantum systems. Streedet al. demonstrate the first absorption imaging of an isolated ytterbium ion, with contrast at the limit of semiclassical theory.

    • Erik W. Streed
    • Andreas Jechow
    • David Kielpinski
    Article