Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Temporally increasing spatial synchrony of North American temperature and bird populations

Abstract

The ecological impacts of modern global climate change are detectable in a wide variety of phenomena, ranging from shifts in species ranges to changes in community composition and human disease dynamics1,2,3. So far, however, little attention has been given to temporal changes in spatial synchrony—the coincident change in abundance or value across the landscape4—despite the importance of environmental synchrony as a driver of population trends and the central role of environmental variability in population rescue and extinction1,5,6. Here we demonstrate that across North America, spatial synchrony of a significant proportion of 49 widespread North American wintering bird species has increased over the past 50 years—the period encompassing particularly intense anthropogenic effects in climate—paralleling significant increases in spatial synchrony of mean maximum air temperature. These results suggest the potential for increased spatial synchrony in environmental factors to be affecting a wide range of ecological phenomena. These effects are likely to vary, but for North American wildlife species, increased spatial synchrony driven by environmental factors may be the basis for a previously unrecognized threat to their long-term persistence in the form of more synchronized population dynamics reducing the potential for demographic rescue among interacting subpopulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Locations of North American bird survey sites and weather stations used in the analyses of spatial synchrony.
Figure 2: Overall spatial synchrony for 49 North American wintering bird species.
Figure 3: Overall change in spatial synchrony of mean maximum temperature across North America, 1960–2009.
Figure 4: Temporal change in spatial synchrony in North American annual mean maximum temperature.

Similar content being viewed by others

References

  1. McLaughlin, J. F., Hellmann, J. J., Boggs, C. L. & Ehrlich, P. R. Climate change hastens populations extinctions. Proc. Natl Acad. Sci. USA 99, 6070–6074 (2002).

    Article  CAS  Google Scholar 

  2. Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005).

    Article  CAS  Google Scholar 

  3. Walther, G.-R. et al. Ecological reponses to recent climate change. Nature 416, 389–395 (2002).

    Article  CAS  Google Scholar 

  4. Liebhold, A., Koenig, W. D. & Bjørnstad, O. N. Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst. 35, 467–490 (2004).

    Article  Google Scholar 

  5. Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58, 445–449 (1977).

    Article  Google Scholar 

  6. Harrison, S. & Quinn, J. F. Correlated environments and the persistence of metapopulations. Oikos 56, 293–298 (1989).

    Article  Google Scholar 

  7. Ripa, J. Analysing the Moran effect and dispersal: their significance and interaction in synchronous population dynamics. Oikos 89, 175–187 (2000).

    Article  Google Scholar 

  8. Ims, R. A. & Andreassen, H. P. Spatial synchronization of vole population dynamics by predatory birds. Nature 408, 194–196 (2000).

    Article  CAS  Google Scholar 

  9. Small, R. J., Marcström, V. & Willebrand, T. Synchyronous and nonsynchronous population fluctuations of some predators and their prey in central Sweden. Ecography 16, 360–364 (1993).

    Article  Google Scholar 

  10. Moran, P. A. P. The statistical analysis of the Canadian lynx cycle. II. Synchronization and meteorology. Aust. J. Zool. 1, 291–298 (1953).

    Article  Google Scholar 

  11. Ranta, E., Kaitala, V., Lindström, J. & Helle, E. The Moran effect and synchrony in population dynamics. Oikos 78, 136–142 (1997).

    Article  Google Scholar 

  12. Earn, D. J. D., Levin, S. A. & Rohani, P. Coherence and conservation. Science 290, 1360–1364 (2000).

    Article  CAS  Google Scholar 

  13. Heino, M., Kaitala, V., Ranta, E. & Lindström, J. Synchronous dynamics and rates of extinction in spatially structured populations. Proc. R. Soc. Lond. B 264, 481–486 (1997).

    Article  Google Scholar 

  14. Stenseth, N. C. et al. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proc. R. Soc. Lond. B 270, 2087–2096 (2003).

    Article  Google Scholar 

  15. Post, E. & Forchhammer, M. C. Spatial synchrony of local populations has increased in association with the recent Northern Hemisphere climate trend. Proc. Natl Acad. Sci. USA 101, 9286–9290 (2004).

    Article  CAS  Google Scholar 

  16. Koenig, W. D. Spatial autocorrelation and local disappearances in wintering North American birds. Ecology 82, 2636–2644 (2001).

    Article  Google Scholar 

  17. Koenig, W. D. Global patterns of environmental synchrony and the Moran effect. Ecography 25, 283–288 (2002).

    Article  Google Scholar 

  18. Strong, C., Zuckerberg, B., Betancourt, J. L. & Koenig, W. D. Climatic dipoles drive two principal modes of North American boreal bird irruption. Proc. Natl Acad. Sci. USA 112, E2795–E2802 (2015).

    Article  CAS  Google Scholar 

  19. Hansen, J. et al. Global temperature change. Proc. Natl Acad. Sci. USA 103, 14288–14293 (2006).

    Article  CAS  Google Scholar 

  20. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Clim. Change 4, 111–116 (2014).

    Article  CAS  Google Scholar 

  21. Goodkin, N. F., Hughen, K. A., Doney, S. C. & Curry, W. B. Increased multidecadal variability of the North Atlantic Oscillation since 1781. Nature Geosci. 1, 844–848 (2008).

    Article  CAS  Google Scholar 

  22. Hurrell, J. W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995).

    Article  CAS  Google Scholar 

  23. Post, E. Ecology of Climate Change: The Importance of Biotic Interactions (Princeton Univ. Press, 2013).

    Book  Google Scholar 

  24. Post, E. & Forchhammer, M. C. Synchronization of animal population dynamics by large-scale climate. Nature 420, 168–171 (2002).

    Article  CAS  Google Scholar 

  25. Hansen, B. B. et al. Climate events synchronize the dynamics of a resident vertebrate community in the high Arctic. Science 339, 313–315 (2013).

    Article  CAS  Google Scholar 

  26. Hanski, I. Metapopulation Ecology (Oxford Univ. Press, 1999).

    Google Scholar 

  27. Palmqvist, E. & Lundberg, P. Population extinctions in correlated environments. Oikos 83, 359–367 (1998).

    Article  Google Scholar 

  28. Hanski, I. Dispersal (eds Clobert, J., Danchin, E., Dhondt, A. A. & Nichols, J. D.) 283–298 (Oxford Univ. Press, 2001).

    Google Scholar 

  29. Stacey, P. B. & Taper, M. Environmental variation and the persistence of small populations. Ecol. Appl. 2, 18–29 (1992).

    Article  Google Scholar 

  30. Bjørnstad, O. N. & Falck, W. Nonparametric spatial covariance functions: estimation and testing. Environ. Ecol. Stat. 8, 53–70 (2001).

    Article  Google Scholar 

  31. Bjørnstad, O. N. ncf: Spatial Nonparametric Covariance Functions R package v. 1.1-5 (2013); https://CRAN.R-project.org/web/packages/ncf/index.html

  32. Bock, C. E. & Root, T. L. The Christmas Bird Count and avian ecology. Stud. Avian Biol. 6, 17–23 (1981).

    Google Scholar 

  33. Global Historical Climate Network versions 3.2.0 (monthly; http://www.ncdc.noaa.gov/ghcnm/v3.php) and 3.12 (daily; http://www.ncdc.noaa.gov/oa/climate/ghcn-daily) (2013).

  34. Taylor, W. E. On the efficiency of the Cochrane–Orcutt estimator. J. Econom. 17, 67–82 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Allstadt, J. Buonaccorsi, C. Cooper, A. Dhondt, W. Hochachka and B. Zuckerberg for comments, discussion and statistical advice. This work was funded by National Science Foundation grants IOS-0918944 and DEB-1256394 to W.D.K.

Author information

Authors and Affiliations

Authors

Contributions

W.D.K. conducted the data analysis; A.M.L. provided critical advice regarding the approach and analyses. Both authors contributed to writing the paper.

Corresponding author

Correspondence to Walter D. Koenig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koenig, W., Liebhold, A. Temporally increasing spatial synchrony of North American temperature and bird populations. Nature Clim Change 6, 614–617 (2016). https://doi.org/10.1038/nclimate2933

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2933

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing