Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An imperative to monitor Earth's energy imbalance

Abstract

The current Earth's energy imbalance (EEI) is mostly caused by human activity, and is driving global warming. The absolute value of EEI represents the most fundamental metric defining the status of global climate change, and will be more useful than using global surface temperature. EEI can best be estimated from changes in ocean heat content, complemented by radiation measurements from space. Sustained observations from the Argo array of autonomous profiling floats and further development of the ocean observing system to sample the deep ocean, marginal seas and sea ice regions are crucial to refining future estimates of EEI. Combining multiple measurements in an optimal way holds considerable promise for estimating EEI and thus assessing the status of global climate change, improving climate syntheses and models, and testing the effectiveness of mitigation actions. Progress can be achieved with a concerted international effort.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effective radiative forcing since 1750.
Figure 2: Schematic representations of the flow and storage of energy in the Earth's climate system and related consequences.
Figure 3: Characterization of the relationships between changes in global surface temperature, global OHC and Earth system energy content on decadal timescales.
Figure 4: Schematic representation of Argo observing system sampling and related ocean heat content estimates.

Similar content being viewed by others

References

  1. Trenberth, K. E. & Stepaniak, D. P. Co-variability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Clim. 16, 3691–3705 (2003).

    Article  Google Scholar 

  2. Trenberth, K. E. & Stepaniak, D. P. Seamless poleward atmospheric energy transport and implications for the Hadley circulation. J. Clim. 16, 3706–3722 (2003).

    Article  Google Scholar 

  3. Trenberth, K. E. & Stepaniak, D. P. The flow of energy through the Earth's climate system. Quart. J. Roy. Meteor. Soc. 130, 2677–2701 (2004).

    Article  Google Scholar 

  4. Hansen, J., Sato, M., Kharecha P. & von Schuckmann, K. Earth's energy imbalance and implications. Atmos. Chem. Phys. 11, 13421–13449 (2011).

    Article  CAS  Google Scholar 

  5. Trenberth, K. E., Zhang, Y., Fasullo, J. T. & Taguchi, S. Climate variability and relationships between top-of-atmosphere radiation and temperatures on Earth. J. Geophys. Res. 120, 3642–3659 (2015).

    Google Scholar 

  6. Trenberth, K. E., Fasullo J. T. & Balmaseda, M. A. Earth's energy imbalance. J. Clim. 27, 3129–3144 (2014).

    Article  Google Scholar 

  7. Mayer, M. & Haimberger, L. Poleward atmospheric energy transports and their variability as evaluated from ECMWF reanalysis data. J. Clim. 25, 734–752 (2012).

    Article  Google Scholar 

  8. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  9. Myhre, G. et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 13, 1853–1877 (2013).

    Article  CAS  Google Scholar 

  10. Loeb, N. G. et al. Towards optimal closure of the earth's top-of-atmosphere radiation budget. J. Clim. 22, 748–766 (2009).

    Article  Google Scholar 

  11. Abraham, J. P. et al. A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys. 51, 450–483 (2013).

    Article  Google Scholar 

  12. Allan, R. P. et al. Changes in global net radiative imbalance 1985–2012. Geophys. Res. Lett. 41, 5588–5597 (2014).

    Article  Google Scholar 

  13. Trenberth, K. E., Stepaniak, D. P. & Caron, J. M. Accuracy of atmospheric energy budgets from analyses. J. Clim. 15, 3343–3360 (2002).

    Article  Google Scholar 

  14. Rhein, M. et al. in Climate Change 2013: The Physical Science Basis. (eds Stocker, T. F. et al.) 255–316 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  15. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).

    Article  Google Scholar 

  16. Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

    Article  Google Scholar 

  17. Balmaseda, M. A., Trenberth K. E. & Kallen, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013).

    Article  Google Scholar 

  18. Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  19. Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 867–952 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  20. Exarchou, E., Kuhlbrodt, T., Gregory, J. M. & Smith, R. S. Ocean heat uptake processes: a model intercomparison. J. Clim. 28, 887–908 (2015).

    Article  Google Scholar 

  21. Meehl, G. A., Hu, A., Arblaster, J. M., Fasullo, J. T. & Trenberth, K. E. Externally forced and internally generated decadal climate variability in the Pacific. J. Clim. 26, 7298–7310 (2013).

    Article  Google Scholar 

  22. Palmer, M. D., McNeall, D. J. & Dunstone, N. J. Importance of the deep ocean for estimating decadal changes in Earth's radiation balance. Geophys. Res. Lett. 38, L13707 (2011).

    Article  Google Scholar 

  23. Trenberth, K. E. & Fasullo, J. T. An apparent hiatus in global warming? Earth's Future 1, 19–32 (2013).

    Article  Google Scholar 

  24. Palmer M. D. & McNeall, D. J. Internal variability of Earth's energy budget simulated by CMIP5 climate models. Environ. Res. Lett. 9, 034016 (2014).

    Article  Google Scholar 

  25. Cheng, L. & Zhu, J. Artifacts in variations of ocean heat content induced by the observation system changes. Geophys. Res. Lett. 41, 7276–7283 (2014).

    Article  Google Scholar 

  26. Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–408 (2013).

    Article  CAS  Google Scholar 

  27. Roemmich, D., Church, J., Gilson, J., Monselesan, D., Sutton, P. & Wijffels, S. Unabated planetary warming and its ocean structure since 2006. Nature Clim. Change 5, 250–245 (2015).

    Article  Google Scholar 

  28. Loeb, N. G. et al. Advances in understanding top-of-atmosphere radiation variability from satellite observations. Surv. Geophys. 33, 359–385 (2012).

    Article  Google Scholar 

  29. Loeb, N. G. et al. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nature Geosci. 5, 110–113 (2012).

    Article  CAS  Google Scholar 

  30. Santer, B. D. et al. Volcanic contribution to decadal changes in tropospheric temperature. Nature Geosci. 7, 185–189 (2014).

    Article  CAS  Google Scholar 

  31. Minnis, P. et al. Radiative climate forcing by the Mount Pinatubo eruption. Science 259, 1411–1415 (1993).

    Article  CAS  Google Scholar 

  32. Wielicki, B. A. et al. Clouds and the Earth's radiant energy system (CERES): an Earth observing system experiment. Bull. Amer. Meteor. Soc. 77, 853–868 (1996).

    Article  Google Scholar 

  33. Kopp, G. & Lean, J. L. A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett. 38, L01706 (2011).

    Article  Google Scholar 

  34. Loeb, N. G. et al. Toward optimal closure of the earth's top-of-atmosphere radiation budget. J. Clim. 22, 748–766 (2009).

    Article  Google Scholar 

  35. Loeb, N. G., Kato, S., Loukachine, K. & Manalo-Smith, N. Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the Earth's Radiant Energy System instrument on the Terra satellite. Part II: validation. J. Atmos. Oceanic Tech. 24, 564–584 (2007).

    Article  Google Scholar 

  36. Doelling, D. R. et al. Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Ocean. Tech. 30, 1072–1090 (2013).

    Article  Google Scholar 

  37. Loeb, N. G., Kato, S., & Wielicki, B. A. Defining top-of-atmosphere flux reference level for earth radiation budget studies. J. Clim. 15, 3301–3309 (2002).

    Article  Google Scholar 

  38. Church, J. A. et al. Revisiting the Earth's sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38, L18601 (2011).

    Article  Google Scholar 

  39. Josey, S. A., Gulev S. & Yu, L. in Ocean Circulation and Climate: A 21st Century Perspective 2nd edn (eds Siedler, G., Griffies, S., Gould, J. & Church, J.) Ch. 5, 115–140 (International Geophysics Series Vol. 103, Academic, 2013).

    Book  Google Scholar 

  40. Woodruff, S. D. et al.: ICOADS release 2.5: extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol. 31, 951–967 (2011).

    Article  Google Scholar 

  41. Jin, X., Yu, L., Jackson, D. L. & Wick, G. A. An improved near-surface specific humidity and air temperature climatology for the SSM/I satellite period. J. Atmos. Oceanic Technol. 32, 412–433 (2015).

    Article  Google Scholar 

  42. Bosilovich, M. G., Robertson, F. R. & Chen, J. Global energy and water budgets in MERRA. J. Clim. 24, 5721–5739 (2011).

    Article  Google Scholar 

  43. Trenberth, K. E., Fasullo, J. T. & Mackaro, J. Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Clim. 24, 4907–4924 (2011).

    Article  Google Scholar 

  44. Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteor. Soc. Japan 93, 5–48 (2015).

    Article  Google Scholar 

  45. Trenberth, K. E. & Fasullo, J. T. Regional energy and water cycles: Transports from ocean to land. J. Clim. 26, 7837–7851 (2013).

    Article  Google Scholar 

  46. Valdivieso, M. et al. An assessment of air–sea heat fluxes from ocean and coupled reanalyses. Clim. Dyn. http://dx.doi.org/10.1007/s00382-015-2843-3 (2015).

  47. Kato, S. et al. Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Clim. 26, 2719–2740 (2013).

    Article  Google Scholar 

  48. Rutan, D. A. et al. CERES synoptic product: methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol. 32, 1121–1143 (2015).

    Article  Google Scholar 

  49. Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth's global energy budget. Bull. Am. Meteor. Soc. 90, 311–324 (2009).

    Article  Google Scholar 

  50. Gouretski, V. & Koltermann, K. P. How much is the ocean really warming? Geophys. Res. Lett. 34, L01610 (2007).

    Article  Google Scholar 

  51. Lyman, J. M. et al. Robust warming of the global upper ocean. Nature 465, 334–337 (2010).

    Article  CAS  Google Scholar 

  52. Desbruyères, D. G. et al. Full-depth temperature trends in the Northeastern Atlantic through the early 21st century. Geophys. Res. Lett. 41, 7971–7979 (2014).

    Article  Google Scholar 

  53. Von Schuckmann, K. et al. Monitoring ocean heat content from the current generation of global ocean observing systems. Ocean Sci. 10, 547–557 (2014).

    Article  Google Scholar 

  54. Nerem, R. S., Chambers, D. P., Choe, C. & Mitchum, G. T. Estimating mean sea level change TOPEX and from the Jason missions. Marine Geodesy. 33, 435–446 (2010).

    Article  Google Scholar 

  55. Ablain, M. et al. Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean Sci. 11, 67–82 (2015).

    Article  Google Scholar 

  56. Johnson, G. F. & Chambers, D. P. Ocean bottom pressure seasonal cycles and decadal trends from GRACE release-05: ocean circulation implications. J. Geophys. Res. Oceans 118, 4228–4240 (2013).

    Article  Google Scholar 

  57. Chen, J. L., Wilson, C. R. & Tapley B. D. Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nature Geosci. 6, 549–552 (2013).

    Article  CAS  Google Scholar 

  58. Llovel, W., Willis, J. K., Landerer, F. K. & Fukumori, I. Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nature Clim. Change 4, 1031–1035 (2014).

    Article  Google Scholar 

  59. Dieng, H. B., Palanisamy, H., Cazenave, A., Meyssignac, B. & von Schuckmann, K. The sea level budget since 2003: inference on the deep ocean heat content Surv. Geophys. 36, 209–229 (2015).

    Article  Google Scholar 

  60. Dieng, H. B., Cazenave, A., von Schuckmann, K., Ablain, M. & Meyssignac, B. Sea level budget over 2005–2013: missing contributions and data errors. Ocean Sci. 11, 789–802 (2015).

    Article  Google Scholar 

  61. Watson, C. S. et al. Unabated global mean sea-level rise over the satellite altimeter. Nature Clim. Change. 5, 565–568 (2015).

    Article  Google Scholar 

  62. Smith, D. M. et al. Earth's energy imbalance since 1960 in observations and CMIP5 models. Geophys. Res. Lett. 42, 1205–1213 (2015).

    Article  Google Scholar 

  63. Wild, M. et al. The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Clim. Dyn. 44, 3393–3429 (2015).

    Article  Google Scholar 

  64. Trenberth, K. E. & Fasullo, J. T. Tracking Earth's energy. Science 328, 316–317 (2010).

    Article  CAS  Google Scholar 

  65. Regayre, L. A. et al. Uncertainty in the magnitude of aerosol-cloud radiative forcing over recent decades. Geophys. Res. Lett. 41, 9040–9049 (2014).

    Article  Google Scholar 

  66. Haigh J. D. et al. An influence of solar spectral variations on radiative forcing of climate. Nature 467, 696–699 (2010).

    Article  CAS  Google Scholar 

  67. Katsman, C. A. & van Oldenborgh, G. J. Tracing the upper ocean's “missing heat”. Geophys. Res. Lett. 38, L14610 (2011).

    Google Scholar 

  68. Koehl, A. & Stammer, D. Decadal sea level changes in the 50-year GECCO ocean synthesis, J. Clim. 21, 1876–1890 (2007).

    Article  Google Scholar 

  69. Carton, J. A. & Santorelli, A. Global decadal upper-ocean heat content as viewed in nine analyses. J. Clim. 21, 6015–6035 (2008).

    Article  Google Scholar 

  70. Balmaseda, M. A., Mogensen K. & Weaver A. T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 139, 1132–1161 (2013).

    Article  Google Scholar 

  71. Balmaseda, M. A. et al. The Ocean Reanalyses Intercomparison Project (ORA-IP). J. Oper. Oceanogr. 8, s80–s97 (2015).

    Google Scholar 

  72. Von Schuckmann, K. et al. A prospectus for the CLIVAR research focus: Consistency between planetary energy balance and ocean heat storage (CONCEPT-HEAT) Community White Paper (WCRP/CLIVAR, 2014).

    Google Scholar 

  73. Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 659–740 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  74. Von Schuckmann, K. & Le Traon, P.-Y. How well can we derive global ocean indicators from Argo data? Ocean Sci. 7, 783–791 (2011).

    Article  Google Scholar 

  75. Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Progr. Oceanogr. 82, 81–100 (2009).

    Article  Google Scholar 

  76. Good, S. A., Martin M. J. & Rayner, N. A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 118, 6704–6716 (2013).

    Article  Google Scholar 

  77. Hosoda, S., Ohira, T., Sato, K. & Suga, T. Improved description of global mixed-layer depth using Argo profiling floats. J. Oceanogr. 66, 773–787 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

Two meetings of this international working group have been supported by the International Space Science Institute (ISSI), Bern, Switzerland.

Author information

Authors and Affiliations

Authors

Contributions

K.v.S. led the formulation of the paper and produced Figs 2 and 4. M.P. produced Fig. 3. The main drafts of the paper were compiled by K.v.S., M.P. and K.T. All authors contributed to discussions, writing and figure development.

Corresponding author

Correspondence to K. von Schuckmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Schuckmann, K., Palmer, M., Trenberth, K. et al. An imperative to monitor Earth's energy imbalance. Nature Clim Change 6, 138–144 (2016). https://doi.org/10.1038/nclimate2876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing