Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ecological stability in response to warming

Abstract

That species’ biological rates including metabolism, growth and feeding scale with temperature is well established from warming experiments1. The interactive influence of these changes on population dynamics, however, remains uncertain. As a result, uncertainty about ecological stability in response under warming remains correspondingly high. In previous studies, severe consumer extinction waves in warmed microcosms2 were explained in terms of warming-induced destabilization of population oscillations3. Here, we show that warming stabilizes predator–prey dynamics at the risk of predator extinction. Our results are based on meta-analyses of a global database of temperature effects on metabolic and feeding rates and maximum population size that includes species of different phylogenetic groups and ecosystem types. To unravel population-level consequences we parameterized a bioenergetic predator–prey model4 and simulated warming effects within ecological, non-evolutionary timescales. In contrast to previous studies3, we find that warming stabilized population oscillations up to a threshold temperature, which is true for most of the possible parameter combinations. Beyond the threshold level, warming caused predator extinction due to starvation. Predictions were tested in a microbial predator–prey system. Together, our results indicate a major change in how we expect climate change to alter natural ecosystems: warming should increase population stability while undermining species diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Empirical warming effects on biological rates.
Figure 2: Simulated predator–prey dynamics across temperature gradients.
Figure 3: Population stability and extinctions in simulated predator–prey systems.
Figure 4: Laboratory time series of the predator T. pyriformis (red lines) and its prey P. fluorescens CHA19-GFP (blue lines).

Similar content being viewed by others

References

  1. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  2. Petchey, O. L., McPhearson, P. T., Casey, T. M. & Morin, P. J. Environmental warming alters food-web structure and ecosystem function. Nature 402, 69–72 (1999).

    Article  CAS  Google Scholar 

  3. Vasseur, D. A. & McCann, K. S. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. Am. Nat. 166, 184–198 (2005).

    Article  Google Scholar 

  4. Otto, S. B., Rall, B. C. & Brose, U. Allometric degree distributions facilitate food-web stability. Nature 450, 1226–1229 (2007).

    Article  CAS  Google Scholar 

  5. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  6. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  7. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article  CAS  Google Scholar 

  8. Thomas, C. D. et al. Biodiversity conservation—Uncertainty in predictions of extinction risk—Effects of changes in climate and land use—Climate change and extinction risk—Reply. Nature 430 http://dx.doi.org/10.1038/nature02719 (2004).

  9. Thomas, C. D., Franco, A. M. A. & Hill, J. K. Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 21, 415–416 (2006).

    Article  Google Scholar 

  10. Rall, B. C., Vucic-Pestic, O., Ehnes, R. B., Emmerson, M. & Brose, U. Temperature, predator–prey interaction strength and population stability. Glob. Change Biol. 16, 2145–2157 (2009).

    Article  Google Scholar 

  11. Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).

    Article  CAS  Google Scholar 

  12. Savage, V., Gillooly, J., Brown, J., West, G. & Charnov, E. Effects of body size and temperature on population growth. Am. Nat. 163, 429–441 (2004).

    Article  Google Scholar 

  13. Englund, G., Ohlund, G., Hein, C. L. & Diehl, S. Temperature dependence of the functional response. Ecol. Lett. 14, 914–921 (2011).

    Article  Google Scholar 

  14. Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Phil. Trans. R. Soc. B 367, 2923–2934 (2012).

    Article  Google Scholar 

  15. Boit, A., Martinez, N. D., Williams, R. J. & Gaedke, U. Mechanistic theory and modelling of complex food-web dynamics in Lake Constance. Ecol. Lett. 15, 594–602 (2012).

    Article  Google Scholar 

  16. Schneider, F. D., Scheu, S. & Brose, U. Body mass constraints on feeding rates determine the consequences of predator loss. Ecol. Lett. 15, 436–443 (2012).

    Article  Google Scholar 

  17. Yodzis, P. & Innes, S. Body size and consumer-resource dynamics. Am. Nat. 139, 1151–1175 (1992).

    Article  Google Scholar 

  18. Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).

    Article  Google Scholar 

  19. Binzer, A., Guill, C., Brose, U. & Rall, B. C. The dynamics of food chains under climate change and nutrient enrichment. Phil. Trans. R. Soc. B 367, 2935–2944 (2012).

    Article  Google Scholar 

  20. Rip, J. M. K. & McCann, K. S. Cross-ecosystem differences in stability and the principle of energy flux. Ecol. Lett. 14, 733–740 (2011).

    Article  CAS  Google Scholar 

  21. Rosenzweig, M. L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).

    Article  CAS  Google Scholar 

  22. Brose, U. et al. Climate change in size-structured ecosystems.. Phil. Trans. R. Soc. B 367, 2903–2912 (2012).

    Article  Google Scholar 

  23. Gillooly, J. F. B. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    Article  CAS  Google Scholar 

  24. Vucic-Pestic, O., Ehnes, R. B., Rall, B. C. & Brose, U. Warming up the system: Higher predator feeding rates but lower energetic efficiencies. Glob. Change Biol. 17, 1301–1310 (2011).

    Article  Google Scholar 

  25. Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).

    Article  Google Scholar 

  26. Jousset, A., Lara, E., Wall, L. G. & Valverde, C. Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl. Environ. Microbiol. 72, 7083–7090 (2006).

    Article  CAS  Google Scholar 

  27. Zuber, S. et al. GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHAO. Mol. Plant. Microbe Interact. 16, 634–644 (2003).

    Article  CAS  Google Scholar 

  28. Ehnes, R. B., Rall, B. C. & Brose, U. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecol. Lett. 14, 993–1000 (2011).

    Article  Google Scholar 

  29. White, C. R., Phillips, N. F. & Seymour, R. S. The scaling and temperature dependence of vertebrate metabolism. Biol. Lett. 2, 125–127 (2006).

    Article  Google Scholar 

  30. Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B 73, 3–36 (2011).

    Article  Google Scholar 

  31. Kim, D. & Oh, H.-S. EMD: Empirical mode decomposition and Hilbert spectral analysis (2013); http://cran.us.r-project.org/web/packages/EMD/index.html

  32. Pinheiro, J. et al. NLME: linear and nonlinear mixed effects models (2013); http://cran.us.r-project.org/web/packages/nlme/index.html

  33. Zuur, A. F. Mixed Effects Models and Extensions in Ecology with R. (Springer, (2009).

    Book  Google Scholar 

Download references

Acknowledgements

The project received financial support from the Dorothea Schlözer Programme of Göttingen University. F.S. gratefully acknowledges financial support from the German Research Foundation (BR 2315/16-1). We thank C. Guill and A. Binzer for constructive ideas and suggestions during the coding process.

Author information

Authors and Affiliations

Authors

Contributions

K.E.F., U.B., B.C.R. and A.J. designed the microcosm experiment. K.E.F. conducted the experiments. Statistical procedures on time series and functional responses were carried out by B.C.R. and K.E.F. B.C.R analysed the database. F.S. wrote and analysed the bioenergetic model. All authors contributed to the manuscript.

Corresponding authors

Correspondence to Florian Schwarzmüller or Ulrich Brose.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fussmann, K., Schwarzmüller, F., Brose, U. et al. Ecological stability in response to warming. Nature Clim Change 4, 206–210 (2014). https://doi.org/10.1038/nclimate2134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing