Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adaptation of a globally important coccolithophore to ocean warming and acidification

Abstract

Although ocean warming and acidification are recognized as two major anthropogenic perturbations of today’s oceans we know very little about how marine phytoplankton may respond via evolutionary change. We tested for adaptation to ocean warming in combination with ocean acidification in the globally important phytoplankton species Emiliania huxleyi. Temperature adaptation occurred independently of ocean acidification levels. Growth rates were up to 16% higher in populations adapted for one year to warming when assayed at their upper thermal tolerance limit. Particulate inorganic (PIC) and organic (POC) carbon production was restored to values under present-day ocean conditions, owing to adaptive evolution, and were 101% and 55% higher under combined warming and acidification, respectively, than in non-adapted controls. Cells also evolved to a smaller size while they recovered their initial PIC:POC ratio even under elevated CO2. The observed changes in coccolithophore growth, calcite and biomass production, cell size and elemental composition demonstrate the importance of evolutionary processes for phytoplankton performance in a future ocean.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time course of exponential growth rates in Emiliania huxleyi over one year subjected to different combinations of temperature and CO2 concentration.
Figure 2: Evolutionary adaptation in Emiliania huxleyi after one year of temperature selection (26.3 versus 15.0 °C) in combination with three CO2 levels simulating ocean acidification.
Figure 3: Restoration of biomass production in E. huxleyi after one year of temperature selection.
Figure 4: Evolutionary adaptation in Emiliania huxleyi to ocean acidification and to temperature alone, and to a combination of both factors.

References

  1. Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A. Global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).

    Article  CAS  Google Scholar 

  2. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    Article  CAS  Google Scholar 

  3. Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    Article  CAS  Google Scholar 

  4. Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nature Clim. Change 3, 979–984 (2013).

    Article  CAS  Google Scholar 

  5. Boyd, P. W. et al. Marine phytoplankton temperature versus growth responses from polar to tropical waters—outcome of a scientific community-wide study. PLoS ONE 8, e63091 (2013).

    Article  CAS  Google Scholar 

  6. Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).

    Article  CAS  Google Scholar 

  7. Boyd, P. W. Beyond ocean acidification. Nature Geosci. 4, 273–274 (2011).

    Article  CAS  Google Scholar 

  8. Hofmann, M. & Schellnhuber, H-J. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. Proc. Natl Acad. Sci. USA 106, 3017–3022 (2009).

    Article  CAS  Google Scholar 

  9. Caldeira, K. & Wickett, M. E. Oceanography: Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).

    Article  CAS  Google Scholar 

  10. Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).

    Article  CAS  Google Scholar 

  11. Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    Article  Google Scholar 

  12. Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2 . Nature 407, 364–367 (2000).

    Article  CAS  Google Scholar 

  13. Lohbeck, K. T., Riebesell, U. & Reusch, T. B. H. Adaptive evolution of a key phytoplankton species to ocean acidification. Nature Geosci. 5, 346–351 (2012).

    Article  CAS  Google Scholar 

  14. Sett, S. et al. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater p CO 2 . PLoS ONE 9, e88308 (2014).

    Article  Google Scholar 

  15. Feng, Y. et al. Interactive effects of increased p CO 2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur. J. Phycol. 43, 87–98 (2008).

    Article  CAS  Google Scholar 

  16. Kremp, A. et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol. Evol. 2, 1195–1207 (2012).

    Article  Google Scholar 

  17. Riebesell, U., Körtzinger, A. & Oschlies, A. Sensitivities of marine carbon fluxes to ocean change. Proc. Natl Acad. Sci. USA 106, 20602–20609 (2009).

    Article  CAS  Google Scholar 

  18. Reusch, T. B.H. & Boyd, P. W. Experimental evolution meets marine phytoplankton. Evolution 67, 1849–1859 (2013).

    Article  Google Scholar 

  19. Bell, G. & Gonzalez, A. Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332, 1327–1330 (2011).

    Article  CAS  Google Scholar 

  20. Schoener, T. W. The newest synthesis: Understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).

    Article  CAS  Google Scholar 

  21. Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    Article  CAS  Google Scholar 

  22. Kovach-Orr, C. & Fussmann, G. F. Evolutionary and plastic rescue in multitrophic model communities. Phil. Trans. R. Soc. B 368, 20120084 (2013).

    Article  Google Scholar 

  23. Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nature Rev. Genet. 4, 457–469 (2003).

    Article  CAS  Google Scholar 

  24. Collins, S. L. & Bell, G. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431, 566–569 (2004).

    Article  CAS  Google Scholar 

  25. Jin, P., Gao, K. & Beardall, J. Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification. Evolution 67, 1869–1878 (2013).

    Article  CAS  Google Scholar 

  26. Paasche, E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification–photosynthesis interactions. Phycologia 40, 503–529 (2002).

    Article  Google Scholar 

  27. Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S. & Wakeham, S. G. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II 49, 219–236 (2001).

    Article  Google Scholar 

  28. Brand, L. E. Genetic variability and spatial patterns of genetic differentiation in the reproductive rates of the marine coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. Limnol. Oceanogr. 27, 236–245 (1982).

    Article  Google Scholar 

  29. Collins, S. Many possible worlds: Expanding the ecological scenarios in experimental evolution. Evol. Biol. 38, 3–14 (2011).

    Article  Google Scholar 

  30. Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).

    Article  CAS  Google Scholar 

  31. Atkinson, D., Ciotti, B. J. & Montagnes, D. J. S. Protists decrease in size linearly with temperature: ca. 2.5% °C−1. Proc. R. Soc. Lond. B 270, 2605–2611 (2003).

    Article  Google Scholar 

  32. Rokitta, S. D., John, U. & Rost, B. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi. PLoS ONE 7, e52212 (2012).

    Article  CAS  Google Scholar 

  33. Bach, L. T. et al. An approach for particle sinking velocity measurements in the 3–400 μm size range and considerations on the effect of temperature on sinking rates. Mar. Biol. 159, 1853–1864 (2012).

    Article  Google Scholar 

  34. Sterner, R. & Elser, J. in The Princeton Guide to Ecology (eds Levin, S. A. et al.) 376–385 (Princeton Univ. Press, 2009).

    Book  Google Scholar 

  35. Rizhsky, L. et al. When defense pathways collide: The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134, 1683–1696 (2004).

    Article  CAS  Google Scholar 

  36. Pena-Miller, R. et al. When the most potent combination of antibiotics selects for the greatest bacterial load: The smile–frown transition. PLoS Biol. 11, e1001540 (2013).

    Article  CAS  Google Scholar 

  37. Lenski, R., Rose, M., Simpson, S. & Tadler, S. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 138, 1315–1341 (1991).

    Article  Google Scholar 

  38. Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154 (2001).

    Article  CAS  Google Scholar 

  39. Weinreich, D. M., Watson, R. A. & Chao, L. Perspective: Sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59, 1165–1174 (2005).

    CAS  Google Scholar 

  40. Wood, A. M. & Leatham, T. The species concept in phytoplankton ecology. J. Phycol. 28, 723–729 (1992).

    Article  Google Scholar 

  41. Zhang, Y. et al. Between- and within-population variations in thermal reaction norms of the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 59, 1570–1580 (2014).

    Article  CAS  Google Scholar 

  42. Lohbeck, K. T., Riebesell, U., Collins, S. & Reusch, T. B. H. Functional genetic divergence in high CO2 adapted Emiliania huxleyi populations. Evolution 67, 1892–1900 (2013).

    Article  Google Scholar 

  43. Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).

    Article  CAS  Google Scholar 

  44. Orr, H. A. The genetic theory of adaptation: A brief history. Nature Rev. Genet. 6, 119–127 (2005).

    Article  CAS  Google Scholar 

  45. Moran, X. A. G., Lopez-Urrutia, Á., Calvo-Díaz, A. & Li, W. K. W. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16, 1137–1144 (2010).

    Article  Google Scholar 

  46. Härnström, K., Ellegaard, M., Andersen, T. J. & Godhe, A. Hundred years of genetic structure in a sediment revived diatom population. Proc. Natl Acad. Sci. USA 108, 4252–4257 (2011).

    Article  Google Scholar 

  47. Collins, S., Rost, B. & Rynearson, T. A. Evolutionary potential of marine phytoplankton under ocean acidification. Evol. Appl. 7, 140–155 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Ebbinghaus, K. Beining, J. Meyer, S. Audritz, D. Gill, A. Ludwig and K. Nachtigall for laboratory assistance. This project was funded by the Kiel Cluster of Excellence ‘Future Ocean’ and the BMBF project ‘Biological Impacts of Ocean Acidification’ (BIOACID). Comments by B. Matthiessen improved earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.S., T.B.H.R., U.R. and K.T.L. planned the experiment, L.S. conducted the experiment. L.S. collected data. J.P.G. contributed statistical analyses. L.S., K.T.L., M.A.G., U.R. and T.B.H.R. analysed and interpreted the results. T.B.H.R. wrote the paper.

Corresponding author

Correspondence to Thorsten B. H. Reusch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlüter, L., Lohbeck, K., Gutowska, M. et al. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nature Clim Change 4, 1024–1030 (2014). https://doi.org/10.1038/nclimate2379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing