Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Reconstruction of the saframycin core scaffold defines dual Pictet-Spengler mechanisms

Abstract

Saframycin A is a potent antitumor antibiotic with a unique pentacyclic tetrahydroisoquinoline scaffold. We found that the nonribosomal peptide synthetase SfmC catalyzes a seven-step transformation of readily synthesized dipeptidyl substrates with long acyl chains into a complex saframycin scaffold. Based on a series of enzymatic reactions, we propose a detailed mechanism involving the reduction of various peptidyl thioesters by a single R domain followed by iterative C domain–mediated Pictet-Spengler reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed overall scheme for the pentacyclic core skeleton assembly.
Figure 2: SfmC-catalyzed reaction with the various dipeptidyl-CoA substrates 4a–e.

Similar content being viewed by others

References

  1. Arai, T., Takahashi, K. & Kubo, A. J. Antibiot. (Tokyo) 30, 1015–1018 (1977).

    Article  CAS  Google Scholar 

  2. Scott, J.D. & Williams, R.M. Chem. Rev. 102, 1669–1730 (2002).

    Article  CAS  Google Scholar 

  3. Cuevas, C. & Francesch, A. Nat. Prod. Rep. 26, 322–337 (2009).

    Article  CAS  Google Scholar 

  4. Cuevas, C. et al. Org. Lett. 2, 2545–2548 (2000).

    Article  CAS  Google Scholar 

  5. Watanabe, K. et al. Nat. Chem. Biol. 2, 423–428 (2006).

    Article  CAS  Google Scholar 

  6. Watanabe, K. et al. J. Am. Chem. Soc. 131, 9347–9353 (2009).

    Article  CAS  Google Scholar 

  7. Watanabe, K. et al. ChemBioChem 10, 1965–1968 (2009).

    Article  CAS  Google Scholar 

  8. Mikami, Y. et al. J. Biol. Chem. 260, 344–348 (1985).

    CAS  PubMed  Google Scholar 

  9. Velasco, A. et al. Mol. Microbiol. 56, 144–154 (2005).

    Article  CAS  Google Scholar 

  10. Fu, C.Y. et al. J. Microbiol. Biotechnol. 19, 439–446 (2009).

    Article  CAS  Google Scholar 

  11. Pospiech, A., Bietenhader, J. & Schupp, T. Microbiology 142, 741–746 (1996).

    Article  CAS  Google Scholar 

  12. Li, L. et al. J. Bacteriol. 190, 251–263 (2008).

    Article  CAS  Google Scholar 

  13. Schmidt, E.W., Nelson, J.T. & Fillmore, J.P. Tetrahedr. Lett. 45, 3921–3924 (2004).

    Article  CAS  Google Scholar 

  14. Fischbach, M.A. & Walsh, C.T. Chem. Rev. 106, 3468–3496 (2006).

    Article  CAS  Google Scholar 

  15. Baltz, R.H., Miao, V. & Wrigley, S.K. Nat. Prod. Rep. 22, 717–741 (2005).

    Article  CAS  Google Scholar 

  16. Hansen, D.B., Bumpus, S.B., Aron, Z.D., Kelleher, N.L. & Walsh, C.T. J. Am. Chem. Soc. 129, 6366–6367 (2007).

    Article  CAS  Google Scholar 

  17. Du, L., Sanchez, C., Chen, M., Edwards, D.J. & Shen, B. Chem. Biol. 7, 623–642 (2000).

    Article  CAS  Google Scholar 

  18. Mossialos, D. et al. Mol. Microbiol. 45, 1673–1685 (2002).

    Article  CAS  Google Scholar 

  19. Visca, P., Imperi, F. & Lamont, I.L. Trends Microbiol. 15, 22–30 (2007).

    Article  CAS  Google Scholar 

  20. Xue, Y. & Sherman, D.H. Nature 403, 571–575 (2000).

    Article  CAS  Google Scholar 

  21. Myers, A.G. & Kung, D.W. J. Am. Chem. Soc. 121, 10828–10829 (1999).

    Article  CAS  Google Scholar 

  22. Bennett, B.D. et al. Nat. Chem. Biol. 5, 593–599 (2009).

    Article  CAS  Google Scholar 

  23. Duerfahrt, T., Eppelmann, K., Muller, R. & Marahiel, M.A. Chem. Biol. 11, 261–271 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) ((B)20310126 to H. Oikawa) and in part by a grant from Japan Science and Technology (JST) (Research for Promoting Technological Seeds 01-073 to H. Oikawa). A fellowship to K.K. from the JSPS is gratefully acknowledged. We thank Y. Kumaki and S. Oka (both of Hokkaido University) for obtaining NMR and mass data.

Author information

Authors and Affiliations

Authors

Contributions

H. Oikawa and K.W. designed the research, and H. Oikawa wrote the manuscript. K.K. and H.S. synthesized the substrates for the enzymatic reactions. K.W. cloned the sfmC gene and optimized the expression conditions. K.K. prepared the deletion enzymes and performed all enzymatic reactions. H. Oguri advised on the research and made a significant contribution to a proposal of the reaction mechanism.

Corresponding author

Correspondence to Hideaki Oikawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–17 and Supplementary Tables 1 and 2 (PDF 1761 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koketsu, K., Watanabe, K., Suda, H. et al. Reconstruction of the saframycin core scaffold defines dual Pictet-Spengler mechanisms. Nat Chem Biol 6, 408–410 (2010). https://doi.org/10.1038/nchembio.365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing