Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic refolding of IFN-γ mRNA enables it to function as PKR activator and translation template

Abstract

Interferon-γ mRNA activates the RNA-dependent protein kinase PKR, which in turn strongly attenuates translation of interferon-γ mRNA. Unlike riboswitches restricted to noncoding regions, the interferon-γ RNA domain that activates PKR comprises the 5′ UTR and 26 translated codons. Extensive interferon-γ coding sequence is thus dedicated to activating PKR and blocking interferon-γ synthesis. This implies that the PKR activator is disrupted by ribosomes during translation initiation and must refold promptly to restore PKR activation. The activator structure harbors an essential kink-turn, probably to allow formation of a pseudoknot that is critical for PKR activation. Three indispensable short helices, bordered by orientation-sensitive base pairs, align with the pseudoknot stem, generating RNA helix of sufficient length to activate PKR. Through gain-of-function mutations, we show that the RNA activator can adopt alternative conformations that activate PKR. This flexibility promotes efficient refolding of interferon-γ mRNA, which is necessary for its dual function as translation template and activator of PKR, and which thus prevents overexpression of this inflammatory cytokine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the PKR activator element in human IFN-γ mRNA.
Figure 2: A-U pairs at the base of helices S1 and S3 are critical for PKR activation.
Figure 3: A K-turn motif is essential for PKR activation.
Figure 4: Alternative RNA conformations in the loop mediate PKR activation.
Figure 5: Alternative RNA conformations in helix S2 mediate PKR activation.
Figure 6: Phylogenetic conservation of the RNA activator of PKR in IFN-γ mRNA.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H. & Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    Article  CAS  Google Scholar 

  2. Dever, T.E., Dar, A.C. & Sicheri, F. The eIF2α kinases. in Translational Control in Biology and Medicine (eds. Mathews, M.B., Sonenberg, N. & Hershey, J.W.) 319–344 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2007).

  3. García, M.A. et al. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol. Mol. Biol. Rev. 70, 1032–1060 (2006).

    Article  Google Scholar 

  4. Sadler, A.J. & Williams, B.R. Interferon-inducible antiviral effectors. Nat. Rev. Immunol. 8, 559–568 (2008).

    Article  CAS  Google Scholar 

  5. Osman, F., Jarrous, N., Ben-Asouli, Y. & Kaempfer, R. A cis-acting element in the 3′-untranslated region of human TNF-α mRNA renders splicing dependent on the activation of protein kinase PKR. Genes Dev. 13, 3280–3293 (1999).

    Article  CAS  Google Scholar 

  6. Ben-Asouli, Y., Banai, Y., Pel-Or, Y., Shir, A. & Kaempfer, R. Human interferon-gamma mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR. Cell 108, 221–232 (2002).

    Article  CAS  Google Scholar 

  7. Kaempfer, R. RNA sensors: novel regulators of gene expression. EMBO Rep. 4, 1043–1047 (2003).

    Article  CAS  Google Scholar 

  8. Billiau, A. Interferon-gamma: biology and role in pathogenesis. Adv. Immunol. 62, 61–130 (1996).

    Article  CAS  Google Scholar 

  9. Gerez, L. et al. Hyperinducible expression of the interferon-gamma (IFN-gamma) gene and its suppression in systemic lupus erythematosus (SLE). Clin. Exp. Immunol. 109, 296–303 (1997).

    Article  CAS  Google Scholar 

  10. Arad, G., Levy, R., Hillman, D. & Kaempfer, R. Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation. Nat. Med. 6, 414–421 (2000).

    Article  CAS  Google Scholar 

  11. Bevilacqua, P.C. & Cech, T.R. Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry 35, 9983–9994 (1996).

    Article  CAS  Google Scholar 

  12. Manche, L., Green, S.R., Schmedt, C. & Mathews, M.B. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol. Cell. Biol. 12, 5238–5248 (1992).

    Article  CAS  Google Scholar 

  13. Zheng, X. & Bevilacqua, P.C. Activation of the protein kinase PKR by short double-stranded RNAs with single-stranded tails. RNA 10, 1934–1945 (2004).

    Article  CAS  Google Scholar 

  14. Winkler, W.C., Cohen-Chalamish, S. & Breaker, R.R. An mRNA structure that controls gene expression by binding FMN. Proc. Natl. Acad. Sci. USA 99, 15908–15913 (2002).

    Article  CAS  Google Scholar 

  15. Winkler, W.C. & Breaker, R.R. Genetic control by metabolite-binding riboswitches. ChemBioChem. 4, 1024–1032 (2003).

    Article  CAS  Google Scholar 

  16. Mandal, M. & Breaker, R.R. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 5, 451–463 (2004).

    Article  CAS  Google Scholar 

  17. Batey, R.T., Gilbert, S.D. & Montange, R.K. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415 (2004).

    Article  CAS  Google Scholar 

  18. Thore, S., Leibundgut, M. & Ban, N. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science 312, 1208–1211 (2006).

    Article  CAS  Google Scholar 

  19. Cheah, M.T., Wachter, A., Sudarsan, N. & Breaker, R.R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447, 497–500 (2007).

    Article  CAS  Google Scholar 

  20. Soukup, G.A. & Breaker, R.R. Relationship between internucleotide linkage geometry and the stability of RNA. RNA 5, 1308–1325 (1999).

    Article  CAS  Google Scholar 

  21. Klein, D.J., Schmeing, T.M., Moore, P.B. & Steitz, T.A. The kink-turn: a new RNA secondary structure motif. EMBO J. 20, 4214–4221 (2001).

    Article  CAS  Google Scholar 

  22. Nallagatla, S.R. et al. 5′-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science 318, 1455–1458 (2007).

    Article  CAS  Google Scholar 

  23. Lescoute, A., Leontis, N.B., Massire, C. & Westhof, E. Recurrent structural RNA motifs, isostericity matrices and sequence alignments. Nucleic Acids Res. 33, 2395–2409 (2005).

    Article  CAS  Google Scholar 

  24. Lescoute, A. & Westhof, E. The interaction networks of structured RNAs. Nucleic Acids Res. 34, 6587–6604 (2006).

    Article  CAS  Google Scholar 

  25. Lescoute, A. & Westhof, E. Topology of three-way junctions in folded RNAs. RNA 12, 83–93 (2006).

    Article  CAS  Google Scholar 

  26. Jaeger, L., Verzemnieks, E.J. & Geary, C. The UA_handle: a versatile submotif in stable RNA architectures. Nucleic Acids Res. 37, 215–230 (2009).

    Article  CAS  Google Scholar 

  27. Strobel, S.A., Adams, P.L., Stahley, M.R. & Wang, J. RNA kink turns to the left and to the right. RNA 10, 1852–1854 (2004).

    Article  CAS  Google Scholar 

  28. Reyes, A., Gissi, C., Pesole, G., Catzeflis, F.M. & Saccone, C. Where do rodents fit? Evidence from the complete mitochondrial genome of Sciurus vulgaris. Mol. Biol. Evol. 17, 979–983 (2000).

    Article  CAS  Google Scholar 

  29. Murphy, W.J. et al. Molecular phylogenetics and the origins of placental mammals. Nature 409, 614–618 (2001).

    Article  CAS  Google Scholar 

  30. Vandenbroeck, K., Dijkmans, R., van Aerschot, A. & Billiau, A. Engineering by PCR-based exon amplification of the genomic porcine interferon-gamma DNA for expression in Escherichia coli. Biochem. Biophys. Res. Commun. 180, 1408–1415 (1991).

    Article  CAS  Google Scholar 

  31. Circle, D.A., Neel, O.D., Robertson, H.D., Clarke, P.A. & Mathews, M.B. Surprising specificity of PKR binding to delta agent genomic RNA. RNA 3, 438–448 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Guerrier-Takada, C., Eder, P.S., Gopalan, V. & Altman, S. Purification and characterization of Rpp25, an RNA-binding protein subunit of human ribonuclease P. RNA 8, 290–295 (2002).

    Article  CAS  Google Scholar 

  33. Suess, B., Fink, B., Berens, C., Stentz, R. & Hillen, W. A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. 5, 1610–1614 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Westhof for valuable suggestions and V. Bafna for bioinformatic analysis of the rodent IFN-γ genes. We thank A. Billiau (Catholic University of Leuven) for porcine IFN-γ cDNA. This work was supported by grants from the Israel Science Foundation and the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Contributions

S.C.-C. performed in-line structure probing and cloned mouse IFN-γ DNA; S.C.-C., A.H., D.W. and F.O. generated mutant RNA transcripts; L.S.N. and F.O. expressed recombinant PKR; R.K. and Y.B. prepared rabbit reticulocyte ribosomes; A.H., Y.B., D.W. and S.C.-C. assayed PKR activation; A.H. and Y.B. measured translation efficiency in cells; R.K. and S.C.-C. designed the study.

Corresponding author

Correspondence to Raymond Kaempfer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 1527 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen-Chalamish, S., Hasson, A., Weinberg, D. et al. Dynamic refolding of IFN-γ mRNA enables it to function as PKR activator and translation template. Nat Chem Biol 5, 896–903 (2009). https://doi.org/10.1038/nchembio.234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing