Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An integrated platform of genomic assays reveals small-molecule bioactivities

A Corrigendum to this article was published on 01 October 2008

This article has been updated

Abstract

Bioactive compounds are widely used to modulate protein function and can serve as important leads for drug development. Identifying the in vivo targets of these compounds remains a challenge. Using yeast, we integrated three genome-wide gene-dosage assays to measure the effect of small molecules in vivo. A single TAG microarray was used to resolve the fitness of strains derived from pools of (i) homozygous deletion mutants, (ii) heterozygous deletion mutants and (iii) genomic library transformants. We demonstrated, with eight diverse reference compounds, that integration of these three chemogenomic profiles improves the sensitivity and specificity of small-molecule target identification. We further dissected the mechanism of action of two protein phosphatase inhibitors and in the process developed a framework for the rational design of multidrug combinations to sensitize cells with specific genotypes more effectively. Finally, we applied this platform to 188 novel synthetic chemical compounds and identified both potential targets and structure-activity relationships.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An integrated chemogenomics screening platform.
Figure 2: Data integration improves small-molecule target prediction.
Figure 3: Cantharidin and calyculin A have distinct effects in vivo.
Figure 4: Mechanistic insights into drug interactions.
Figure 5: Characterization of new bioactive compounds.
Figure 6: Correlation of chemogenomic profiles with compound structure similarity.

Similar content being viewed by others

Change history

  • 17 September 2008

    In the version of this article initially published, there was a space missing in the author name Robert P St Onge. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Giaever, G. et al. Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl. Acad. Sci. USA 101, 793–798 (2004).

    Article  CAS  Google Scholar 

  2. Lum, P.Y. et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116, 121–137 (2004).

    Article  CAS  Google Scholar 

  3. Lee, W. et al. Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet. 1, 235–246 (2005).

    Article  CAS  Google Scholar 

  4. Parsons, A.B. et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126, 611–625 (2006).

    Article  CAS  Google Scholar 

  5. Rine, J., Hansen, W., Hardeman, E. & Davis, R.W. Targeted selection of recombinant clones through gene dosage effects. Proc. Natl. Acad. Sci. USA 80, 6750–6754 (1983).

    Article  CAS  Google Scholar 

  6. Luesch, H. et al. A genome-wide overexpression screen in yeast for small-molecule target identification. Chem. Biol. 12, 55–63 (2005).

    Article  CAS  Google Scholar 

  7. Butcher, R.A. et al. Microarray-based method for monitoring yeast overexpression strains reveals small-molecule targets in TOR pathway. Nat. Chem. Biol. 2, 103–109 (2006).

    Article  CAS  Google Scholar 

  8. Parsons, A.B. et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat. Biotechnol. 22, 62–69 (2004).

    Article  CAS  Google Scholar 

  9. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  10. Kung, C. et al. Chemical genomic profiling to identify intracellular targets of a multiplex kinase inhibitor. Proc. Natl. Acad. Sci. USA 102, 3587–3592 (2005).

    Article  CAS  Google Scholar 

  11. Lamb, J. et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    Article  CAS  Google Scholar 

  12. Pierce, S.E. et al. A unique and universal molecular barcode array. Nat. Methods 3, 601–603 (2006).

    Article  CAS  Google Scholar 

  13. Pierce, S.E., Davis, R.W., Nislow, C. & Giaever, G. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat. Protoc. 2, 2958–2974 (2007).

    Article  CAS  Google Scholar 

  14. Brenner, C. Chemical genomics in yeast. Genome Biol. 5, 240 (2004).

    Article  Google Scholar 

  15. Giaever, G. et al. Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat. Genet. 21, 278–283 (1999).

    Article  CAS  Google Scholar 

  16. Li, X. et al. Multicopy suppressors for novel antibacterial compounds reveal targets and drug efflux susceptibility. Chem. Biol. 11, 1423–1430 (2004).

    Article  CAS  Google Scholar 

  17. Breitling, R., Armengaud, P. & Amtmann, A. Vector analysis as a fast and easy method to compare gene expression responses between different experimental backgrounds. BMC Bioinformatics 6, 181 (2005).

    Article  Google Scholar 

  18. Myers, C.E., Lippman, M.E., Elliot, H.M. & Chabner, B.A. Competitive protein binding assay for methotrexate. Proc. Natl. Acad. Sci. USA 72, 3683–3686 (1975).

    Article  CAS  Google Scholar 

  19. Kontoyiannis, D.P., Sagar, N. & Hirschi, K.D. Overexpression of Erg11p by the regulatable GAL1 promoter confers fluconazole resistance in Saccharomyces cerevisiae . Antimicrob. Agents Chemother. 43, 2798–2800 (1999).

    Article  CAS  Google Scholar 

  20. Zheng, X.F., Florentino, D., Chen, J., Crabtree, G.R. & Schreiber, S.L. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 82, 121–130 (1995).

    Article  CAS  Google Scholar 

  21. Koltin, Y. et al. Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidyl-prolyl cis-trans isomerase related to human FK506-binding protein. Mol. Cell. Biol. 11, 1718–1723 (1991).

    Article  CAS  Google Scholar 

  22. Honkanen, R.E. Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A. FEBS Lett. 330, 283–286 (1993).

    Article  CAS  Google Scholar 

  23. Li, Y.M. & Casida, J.E. Cantharidin-binding protein: identification as protein phosphatase 2A. Proc. Natl. Acad. Sci. USA 89, 11867–11870 (1992).

    Article  CAS  Google Scholar 

  24. Ishihara, H. et al. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem. Biophys. Res. Commun. 159, 871–877 (1989).

    Article  CAS  Google Scholar 

  25. Fujiki, H. & Suganuma, M. Tumor promotion by inhibitors of protein phosphatases 1 and 2A: the okadaic acid class of compounds. Adv. Cancer Res. 61, 143–194 (1993).

    Article  CAS  Google Scholar 

  26. MacKintosh, C., Beattie, K.A., Klumpp, S., Cohen, P. & Codd, G.A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 264, 187–192 (1990).

    Article  CAS  Google Scholar 

  27. Walsh, E.P., Lamont, D.J., Beattie, K.A. & Stark, M.J. Novel interactions of Saccharomyces cerevisiae type 1 protein phosphatase identified by single-step affinity purification and mass spectrometry. Biochemistry 41, 2409–2420 (2002).

    Article  CAS  Google Scholar 

  28. Krogan, N.J. et al. High-definition macromolecular composition of yeast RNA-processing complexes. Mol. Cell 13, 225–239 (2004).

    Article  CAS  Google Scholar 

  29. Andrews, P.D. & Stark, M.J. Type 1 protein phosphatase is required for maintenance of cell wall integrity, morphogenesis and cell cycle progression in Saccharomyces cerevisiae . J. Cell Sci. 113, 507–520 (2000).

    CAS  PubMed  Google Scholar 

  30. Baker, S.H., Frederick, D.L., Bloecher, A. & Tatchell, K. Alanine-scanning mutagenesis of protein phosphatase type 1 in the yeast Saccharomyces cerevisiae . Genetics 145, 615–626 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsu, J.Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102, 279–291 (2000).

    Article  CAS  Google Scholar 

  32. Bloecher, A. & Tatchell, K. Defects in Saccharomyces cerevisiae protein phosphatase type I activate the spindle/kinetochore checkpoint. Genes Dev. 13, 517–522 (1999).

    Article  CAS  Google Scholar 

  33. Hillenmeyer, M.E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).

    Article  CAS  Google Scholar 

  34. Martin, J.L. & McMillan, F.M. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr. Opin. Struct. Biol. 12, 783–793 (2002).

    Article  CAS  Google Scholar 

  35. Arnaud, M.B. et al. Sequence resources at the Candida Genome Database. Nucleic Acids Res. 35, D452–D456 (2007).

    Article  CAS  Google Scholar 

  36. Bliss, C. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26, 585–615 (1939).

    Article  CAS  Google Scholar 

  37. Lehar, J. et al. Chemical combination effects predict connectivity in biological systems. Mol. Syst. Biol. 3, 80 (2007).

    Article  Google Scholar 

  38. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).

    Article  CAS  Google Scholar 

  39. Young, D.W. et al. Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat. Chem. Biol. 4, 59–68 (2008).

    Article  CAS  Google Scholar 

  40. Baguley, B.C. & Nash, R. Antitumour activity of substituted 9-anilinoacridines–comparison of in vivo and in vitro testing systems. Eur. J. Cancer 17, 671–679 (1981).

    Article  CAS  Google Scholar 

  41. Nelson, E.M., Tewey, K.M. & Liu, L.F. Mechanism of antitumor drug action: poisoning of mammalian DNA topoisomerase II on DNA by 4′-(9-acridinylamino)-methanesulfon-m-anisidide. Proc. Natl. Acad. Sci. USA 81, 1361–1365 (1984).

    Article  CAS  Google Scholar 

  42. Denny, W.A. et al. Potential antitumor agents. 36. Quantitative relationships between experimental antitumor activity, toxicity, and structure for the general class of 9-anilinoacridine antitumor agents. J. Med. Chem. 25, 276–315 (1982).

    Article  CAS  Google Scholar 

  43. Terstappen, G.C., Schlupen, C., Raggiaschi, R. & Gaviraghi, G. Target deconvolution strategies in drug discovery. Nat. Rev. Drug Discov. 6, 891–903 (2007).

    Article  CAS  Google Scholar 

  44. Zimmermann, G.R., Lehar, J. & Keith, C.T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today 12, 34–42 (2007).

    Article  CAS  Google Scholar 

  45. Borisy, A.A. et al. Systematic discovery of multicomponent therapeutics. Proc. Natl. Acad. Sci. USA 100, 7977–7982 (2003).

    Article  CAS  Google Scholar 

  46. Bishop, A.C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  Google Scholar 

  47. Gietz, R.D., Schiestl, R.H., Willems, A.R. & Woods, R.A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360 (1995).

    Article  CAS  Google Scholar 

  48. Kadosh, D. & Johnson, A.D. Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans . Mol. Cell. Biol. 21, 2496–2505 (2001).

    Article  CAS  Google Scholar 

  49. Lan, C.Y. et al. Metabolic specialization associated with phenotypic switching in Candida albicans . Proc. Natl. Acad. Sci. USA 99, 14907–14912 (2002).

    Article  CAS  Google Scholar 

  50. Breitling, R., Armengaud, P., Amtmann, A. & Herzyk, P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 573, 83–92 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Tatchell (Louisiana State University) for sharing the glc-7 alleles and M. Cyert (Stanford University) for providing the S. cerevisiae genomic library. We thank H. Ng and S. Lockey for critically reading the manuscript and members of the chemogenomics lab at the Stanford Genome Technology Center for discussions. S.H. is supported by a graduate fellowship from the Agency for Science Technology and Research (Singapore). R.P.S. was supported by a postdoctoral fellowship from the Canadian Institutes of Health Research. K.M.S. and R.W.D. are supported by grants from the US National Institutes of Health; G.G. and C.N. are supported by grants from the US National Institutes of Health and the Canadian Institutes of Health Research (MOP-81340 to G.G. and MOP-84305 to C.N.).

Author information

Authors and Affiliations

Authors

Contributions

C.N., R.P.S. and S.H. designed the study, analyzed the data and wrote the paper; S.H. and R.P.S. did the experiments. G.G. analyzed the data and helped write the paper. A.S. did the glc7 allele analysis; I.M.W. did the cheminformatic analysis. M.P. designed the robotic assay platform; E.F. designed the database infrastructure. K.M.S. and C.Z. designed the cdc28-as experiment. R.W.D. provided valuable advice. M.M. and S.S. helped with genome-wide screens.

Corresponding authors

Correspondence to Robert P St Onge or Corey Nislow.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Methods (PDF 4803 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoon, S., M Smith, A., Wallace, I. et al. An integrated platform of genomic assays reveals small-molecule bioactivities. Nat Chem Biol 4, 498–506 (2008). https://doi.org/10.1038/nchembio.100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing