Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD15 expression in human myeloid cell differentiation is regulated by sialidase activity

Abstract

The glycan determinant CD15 (also known as Lewis x, or Lex) is a distinguishing marker for human myeloid cells and mediates neutrophil adhesion to dendritic cells. Despite broad interest in this structure, the mechanisms underlying CD15 expression remain relatively uncharacterized. Accordingly, we investigated the molecular basis of increasing CD15 expression associated with human myeloid cell differentiation. Flow cytometric analysis of differentiating cells together with biochemical studies using inhibitors of glycan synthesis and of sialidases showed that increased CD15 expression is not due to de novo biosynthesis of CD15, but results predominantly from induction of α(2-3)-sialidase activity, which yields CD15 from cell-surface sialyl-CD15 (also known as sialyl-Lewis x, sLex or CD15s). This differentiation-associated conversion of surface CD15s to CD15 occurs mainly on glycoproteins. Until now, modulation of post-translational glycan modifications has been attributed solely to dynamic variations in glycosyltransferase expression. Our results unveil a new paradigm by demonstrating a critical role for post-Golgi membrane glycosidase activity in the 'biosynthesis' of a key glycan determinant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypotheses for increased CD15 expression during myeloid differentiation.
Figure 2: CD44 ligation-induced changes in expression of CD15s and CD15.
Figure 3: CD44 ligation increases sialidase activity on myeloid cells.
Figure 4: CD44 ligation increases CD15 and decreases CD15s expression on glycoproteins of myeloid cells.
Figure 5: G-CSF treatment increases sialidase activity on myeloid cells.

Similar content being viewed by others

References

  1. Gooi, H.C. et al. Marker of peripheral blood granulocytes and monocytes of man recognized by two monoclonal antibodies VEP8 and VEP9 involves the trisaccharide 3-fucosyl-N-acetyllactosamine. Eur. J. Immunol. 13, 306–312 (1983).

    Article  CAS  Google Scholar 

  2. Tao, W. et al. Comparative proteomic analysis of human CD34+ stem/progenitor cells and mature CD15+ myeloid cells. Stem Cells 22, 1003–1014 (2004).

    Article  CAS  Google Scholar 

  3. Henderson, J.K. et al. Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20, 329–337 (2002).

    Article  CAS  Google Scholar 

  4. Anjos-Afonso, F. & Bonnet, D. Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 109, 1298–1306 (2007).

    Article  CAS  Google Scholar 

  5. Gege, C., Geyer, A. & Schmidt, R.R. Synthesis and molecular tumbling properties of sialyl Lewis X and derived neoglycolipids. Chemistry 8, 2454–2463 (2002).

    Article  CAS  Google Scholar 

  6. Foxall, C. et al. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. J. Cell Biol. 117, 895–902 (1992).

    Article  CAS  Google Scholar 

  7. Dimitroff, C.J., Bernacki, R.J. & Sackstein, R. Glycosylation-dependent inhibition of cutaneous lymphocyte-associated antigen expression: implications in modulating lymphocyte migration to skin. Blood 101, 602–610 (2003).

    Article  CAS  Google Scholar 

  8. Fuhlbrigge, R.C., Kieffer, J.D., Armerding, D. & Kupper, T.S. Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature 389, 978–981 (1997).

    Article  CAS  Google Scholar 

  9. Sackstein, R. The bone marrow is akin to skin: HCELL and the biology of hematopoietic stem cell homing. J. Invest. Dermatol. 122, 1061–1069 (2004).

    Article  CAS  Google Scholar 

  10. Sackstein, R. et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat. Med. 14, 181–187 (2008).

    Article  CAS  Google Scholar 

  11. Zannettino, A.C. et al. Primitive human hematopoietic progenitors adhere to P-selectin (CD62P). Blood 85, 3466–3477 (1995).

    CAS  PubMed  Google Scholar 

  12. Terstappen, L.W., Buescher, S., Nguyen, M. & Reading, C. Differentiation and maturation of growth factor expanded human hematopoietic progenitors assessed by multidimensional flow cytometry. Leukemia 6, 1001–1010 (1992).

    CAS  PubMed  Google Scholar 

  13. van Gisbergen, K.P., Ludwig, I.S., Geijtenbeek, T.B. & van Kooyk, Y. Interactions of DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils. FEBS Lett. 579, 6159–6168 (2005).

    Article  CAS  Google Scholar 

  14. van Gisbergen, K.P., Sanchez-Hernandez, M., Geijtenbeek, T.B. & van Kooyk, Y. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J. Exp. Med. 201, 1281–1292 (2005).

    Article  CAS  Google Scholar 

  15. Kannagi, R. Transcriptional regulation of expression of carbohydrate ligands for cell adhesion molecules in the selectin family. Adv. Exp. Med. Biol. 491, 267–278 (2001).

    Article  CAS  Google Scholar 

  16. Lowe, J.B. Glycosylation in the control of selectin counter-receptor structure and function. Immunol. Rev. 186, 19–36 (2002).

    Article  CAS  Google Scholar 

  17. Nakayama, F. et al. CD15 expression in mature granulocytes is determined by alpha 1,3-fucosyltransferase IX, but in promyelocytes and monocytes by alpha 1,3-fucosyltransferase IV. J. Biol. Chem. 276, 16100–16106 (2001).

    Article  CAS  Google Scholar 

  18. Lund-Johansen, F. & Terstappen, L.W. Differential surface expression of cell adhesion molecules during granulocyte maturation. J. Leukoc. Biol. 54, 47–55 (1993).

    Article  CAS  Google Scholar 

  19. Kansas, G.S., Muirhead, M.J. & Dailey, M.O. Expression of the CD11/CD18, leukocyte adhesion molecule 1, and CD44 adhesion molecules during normal myeloid and erythroid differentiation in humans. Blood 76, 2483–2492 (1990).

    CAS  PubMed  Google Scholar 

  20. Charrad, R.S. et al. Effects of anti-CD44 monoclonal antibodies on differentiation and apoptosis of human myeloid leukemia cell lines. Blood 99, 290–299 (2002).

    Article  CAS  Google Scholar 

  21. Gadhoum, Z. et al. The effect of anti-CD44 monoclonal antibodies on differentiation and proliferation of human acute myeloid leukemia cells. Leuk. Lymphoma 45, 1501–1510 (2004).

    Article  CAS  Google Scholar 

  22. Li, F. et al. Post-translational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P- and E-selectin. J. Biol. Chem. 271, 3255–3264 (1996).

    Article  CAS  Google Scholar 

  23. Maemura, K. & Fukuda, M. Poly-N-acetyllactosaminyl O-glycans attached to leukosialin. The presence of sialyl Le(x) structures in O-glycans. J. Biol. Chem. 267, 24379–24386 (1992).

    CAS  PubMed  Google Scholar 

  24. Fuhlbrigge, R.C., King, S.L., Sackstein, R. & Kupper, T.S. CD43 is a ligand for E-selectin on CLA+ human T cells. Blood 107, 1421–1426 (2006).

    Article  CAS  Google Scholar 

  25. Fukushima, K. et al. Characterization of sialosylated Lewisx as a new tumor-associated antigen. Cancer Res. 44, 5279–5285 (1984).

    CAS  PubMed  Google Scholar 

  26. Datta, A.K. & Paulson, J.C. Sialylmotifs of sialyltransferases. Indian J. Biochem. Biophys. 34, 157–165 (1997).

    CAS  PubMed  Google Scholar 

  27. Woods, J.M. et al. 4-Guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid is a highly effective inhibitor both of the sialidase (neuraminidase) and of growth of a wide range of influenza A and B viruses in vitro. Antimicrob. Agents Chemother. 37, 1473–1479 (1993).

    Article  CAS  Google Scholar 

  28. Stamatos, N.M. et al. Differential expression of endogenous sialidases of human monocytes during cellular differentiation into macrophages. FEBS J. 272, 2545–2556 (2005).

    Article  CAS  Google Scholar 

  29. Wang, P. et al. Induction of lysosomal and plasma membrane-bound sialidases in human T-cells via T-cell receptor. Biochem. J. 380, 425–433 (2004).

    Article  CAS  Google Scholar 

  30. Azuma, Y., Taniguchi, A. & Matsumoto, K. Decrease in cell surface sialic acid in etoposide-treated Jurkat cells and the role of cell surface sialidase. Glycoconj. J. 17, 301–306 (2000).

    Article  CAS  Google Scholar 

  31. Kopitz, J., Muhl, C., Ehemann, V., Lehmann, C. & Cantz, M. Effects of cell surface ganglioside sialidase inhibition on growth control and differentiation of human neuroblastoma cells. Eur. J. Cell Biol. 73, 1–9 (1997).

    CAS  PubMed  Google Scholar 

  32. Monti, E. et al. Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochem. J. 349, 343–351 (2000).

    Article  CAS  Google Scholar 

  33. Pshezhetsky, A.V. & Ashmarina, M. Lysosomal multienzyme complex: biochemistry, genetics, and molecular pathophysiology. Prog. Nucleic Acid Res. Mol. Biol. 69, 81–114 (2001).

    Article  CAS  Google Scholar 

  34. Stroud, M.R. et al. Myeloglycan, a series of E-selectin-binding polylactosaminolipids found in normal human leukocytes and myelocytic leukemia HL60 cells. Biochem. Biophys. Res. Commun. 209, 777–787 (1995).

    Article  CAS  Google Scholar 

  35. Dagia, N.M. et al. G-CSF induces E-selectin ligand expression on human myeloid cells. Nat. Med. 12, 1185–1190 (2006).

    Article  CAS  Google Scholar 

  36. Hirata, T. et al. P-Selectin glycoprotein ligand 1 (PSGL-1) is a physiological ligand for E-selectin in mediating T helper 1 lymphocyte migration. J. Exp. Med. 192, 1669–1676 (2000).

    Article  CAS  Google Scholar 

  37. Levesque, J.P. et al. PSGL-1-mediated adhesion of human hematopoietic progenitors to P-selectin results in suppression of hematopoiesis. Immunity 11, 369–378 (1999).

    Article  CAS  Google Scholar 

  38. Varki, N.M. & Varki, A. Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab. Invest. 87, 851–857 (2007).

    Article  CAS  Google Scholar 

  39. Cyopick, P. et al. Role of aberrant sialylation of chronic myeloid leukemia granulocytes on binding and signal transduction by chemotactic peptides and colony stimulating factors. Leuk. Lymphoma 11, 79–90 (1993).

    Article  CAS  Google Scholar 

  40. Aldape, M.J., Bryant, A.E., Ma, Y. & Stevens, D.L. The leukemoid reaction in Clostridium sordellii infection: neuraminidase induction of promyelocytic cell proliferation. J. Infect. Dis. 195, 1838–1845 (2007).

    Article  CAS  Google Scholar 

  41. Crocker, P.R. Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling. Curr. Opin. Struct. Biol. 12, 609–615 (2002).

    Article  CAS  Google Scholar 

  42. Nguyen, D.H., Ball, E.D. & Varki, A. Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs. Exp. Hematol. 34, 728–735 (2006).

    Article  CAS  Google Scholar 

  43. Capela, A. & Temple, S. LeX is expressed by principle progenitor cells in the embryonic nervous system, is secreted into their environment and binds Wnt-1. Dev. Biol. 291, 300–313 (2006).

    Article  CAS  Google Scholar 

  44. Da Silva, J.S., Hasegawa, T., Miyagi, T., Dotti, C.G. & Abad-Rodriguez, J. Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nat. Neurosci. 8, 606–615 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Floyd, S. Hamdan, C. Silvescu and C. Knoblauch for technical support, to J. Merzaban, N. Stamatos, C. Dimitroff and M. Burdick for helpful discussions of the manuscript, and to I. Galinsky, R. Stone, D. DeAngelo, M. Wadleigh and A. Sirulnik for assistance in procuring leukemia samples. This work was supported by US National Heart, Lung, and Blood Institute grant RO1 HL60528 (R.S.), US National Institute of Diabetes and Digestive and Kidney Diseases grant R21 DK075012 (R.S.) and the Team Jobie Leukemia Research fund (R.S.).

Author information

Authors and Affiliations

Authors

Contributions

S.Z.G. designed the research, performed the experiments, analyzed the data and wrote the paper. R.S. conceived the study, designed the research, analyzed the data, wrote the paper, provided funding for the research and supervised all experimentation.

Corresponding author

Correspondence to Robert Sackstein.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Table 1 and Supplementary Methods (PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadhoum, S., Sackstein, R. CD15 expression in human myeloid cell differentiation is regulated by sialidase activity. Nat Chem Biol 4, 751–757 (2008). https://doi.org/10.1038/nchembio.116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing