Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping the energy landscape for second-stage folding of a single membrane protein

Abstract

Membrane proteins are designed to fold and function in a lipid membrane, yet folding experiments within a native membrane environment are challenging to design. Here we show that single-molecule forced unfolding experiments can be adapted to study helical membrane protein folding under native-like bicelle conditions. Applying force using magnetic tweezers, we find that a transmembrane helix protein, Escherichia coli rhomboid protease GlpG, unfolds in a highly cooperative manner, largely unraveling as one physical unit in response to mechanical tension above 25 pN. Considerable hysteresis is observed, with refolding occurring only at forces below 5 pN. Characterizing the energy landscape reveals only modest thermodynamic stability (ΔG = 6.5 kBT) but a large unfolding barrier (21.3 kBT) that can maintain the protein in a folded state for long periods of time (t1/2 3.5 h). The observed energy landscape may have evolved to limit the existence of troublesome partially unfolded states and impart rigidity to the structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cooperative unfolding and refolding of GlpG in bicelles.
Figure 2: C- to N-terminus unfolding of single GlpG with two intermediates.
Figure 3: Folding energy landscape of GlpG.
Figure 4: Comparison of kinetic and thermodynamic properties between WT and mutant GlpG.
Figure 5: How the folding energy landscape of GlpG may prevent dangerous misfolded states.

Similar content being viewed by others

References

  1. Engelman, D.M. et al. Membrane protein folding: beyond the two stage model. FEBS Lett. 555, 122–125 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Bowie, J.U. Solving the membrane protein folding problem. Nature 438, 581–589 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. White, S.H. & von Heijne, G. How translocons select transmembrane helices. Annu. Rev. Biophys. 37, 23–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Hong, H., Blois, T.M., Cao, Z. & Bowie, J.U. Method to measure strong protein-protein interactions in lipid bilayers using a steric trap. Proc. Natl. Acad. Sci. USA 107, 19802–19807 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chang, Y.C. & Bowie, J.U. Measuring membrane protein stability under native conditions. Proc. Natl. Acad. Sci. USA 111, 219–224 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Oesterhelt, F. et al. Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kedrov, A., Janovjak, H., Sapra, K.T. & Muller, D.J. Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. Annu. Rev. Biophys. Biomol. Struct. 36, 233–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Engel, A. & Gaub, H.E. Structure and mechanics of membrane proteins. Annu. Rev. Biochem. 77, 127–148 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Zocher, M. et al. Single-molecule force spectroscopy from nanodiscs: an assay to quantify folding, stability, and interactions of native membrane proteins. ACS Nano 6, 961–971 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Cecconi, C., Shank, E.A., Bustamante, C. & Marqusee, S. Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Shank, E.A., Cecconi, C., Dill, J.W., Marqusee, S. & Bustamante, C. The folding cooperativity of a protein is controlled by its chain topology. Nature 465, 637–640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Faham, S. & Bowie, J.U. Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J. Mol. Biol. 316, 1–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Joh, N.H. et al. Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins. Nature 453, 1266–1270 (2008).

    CAS  PubMed  Google Scholar 

  14. Dürr, U.H., Gildenberg, M. & Ramamoorthy, A. The magic of bicelles lights up membrane protein structure. Chem. Rev. 112, 6054–6074 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wang, Y.C., Zhang, Y.J. & Ha, Y. Crystal structure of a rhomboid family intramembrane protease. Nature 444, 179–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Wu, Z.R. et al. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat. Struct. Mol. Biol. 13, 1084–1091 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Ben-Shem, A., Fass, D. & Bibi, E. Structural basis for intramembrane proteolysis by rhomboid serine proteases. Proc. Natl. Acad. Sci. USA 104, 462–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Vinothkumar, K.R. Structure of rhomboid protease in a lipid environment. J. Mol. Biol. 407, 232–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lemberg, M.K. & Freeman, M. Cutting proteins within lipid bilayers: rhomboid structure and mechanism. Mol. Cell 28, 930–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Freeman, M. Rhomboid proteases and their biological functions. Annu. Rev. Genet. 42, 191–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Ha, Y., Akiyama, Y. & Xue, Y. Structure and mechanism of rhomboid protease. J. Biol. Chem. 288, 15430–15436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vinothkumar, K.R. & Freeman, M. Intramembrane proteolysis by rhomboids: catalytic mechanisms and regulatory principles. Curr. Opin. Struct. Biol. 23, 851–858 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Lemberg, M.K. Sampling the membrane: function of rhomboid-family proteins. Trends Cell Biol. 23, 210–217 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Baker, R.P. & Urban, S. Architectural and thermodynamic principles underlying intramembrane protease function. Nat. Chem. Biol. 8, 759–768 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paslawski, W. et al. Cooperative folding of a polytopic α-helical membrane protein involves a compact N-terminal nucleus and nonnative loops. Proc. Natl. Acad. Sci. USA 112, 7978–7983 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cecconi, C., Shank, E.A., Marqusee, S. & Bustamante, C. in DNA Nanotechnology: Methods and Protocols 1st edn. Vol. 749 (eds. Zuccheri, G. & Samorì, B.) 255–271 (Humana Press, 2011).

  27. Min, D. et al. Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat. Commun. 4, 1705–1714 (2013).

    Article  PubMed  CAS  Google Scholar 

  28. Bae, W. et al. Programmed folding of DNA origami structures through single-molecule force control. Nat. Commun. 5, 5654–5661 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saleh, O.A., Allemand, J.F., Croquette, V. & Bensimon, D. Single-molecule manipulation measurements of DNA transport proteins. ChemPhysChem 6, 813–818 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, K. & Saleh, O.A. A high-resolution magnetic tweezer for single-molecule measurements. Nucleic Acids Res. 37, 136–142 (2009).

    Article  CAS  Google Scholar 

  32. Lipfert, J., Hao, X.M. & Dekker, N.H. Quantitative modeling and optimization of magnetic tweezers. Biophys. J. 96, 5040–5049 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De Vlaminck, I. & Dekker, C. Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41, 453–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Greenleaf, W.J., Frieda, K.L., Foster, D.A.N., Woodside, M.T. & Block, S.M. Direct observation of hierarchical folding in single riboswitch aptamers. Science 319, 630–633 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alegre-Cebollada, J., Kosuri, P., Rivas-Pardo, J.A. & Fernandez, J.M. Direct observation of disulfide isomerization in a single protein. Nat. Chem. 3, 882–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stigler, J., Ziegler, F., Gieseke, A., Gebhardt, J.C.M. & Rief, M. The complex folding network of single calmodulin molecules. Science 334, 512–516 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: A comparison. Proc. Natl. Acad. Sci. USA 96, 3694–3699 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liphardt, J., Onoa, B., Smith, S.B., Tinoco, I. Jr. & Bustamante, C. Reversible unfolding of single RNA molecules by mechanical force. Science 292, 733–737 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Beaugrand, M. et al. Lipid concentration and molar ratio boundaries for the use of isotropic bicelles. Langmuir 30, 6162–6170 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Curnow, P. & Booth, P.J. Combined kinetic and thermodynamic analysis of α-helical membrane protein unfolding. Proc. Natl. Acad. Sci. USA 104, 18970–18975 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Otzen, D.E. Mapping the folding pathway of the transmembrane protein DsbB by protein engineering. Protein Eng. Des. Sel. 24, 139–149 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Watters, A.L. et al. The highly cooperative folding of small naturally occurring proteins is likely the result of natural selection. Cell 128, 613–624 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Cymer, F., von Heijne, G. & White, S.H. Mechanisms of integral membrane protein insertion and folding. J. Mol. Biol. 427, 999–1022 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, S.J. & Skach, W.R. Mechanisms of CFTR folding at the endoplasmic reticulum. Front. Pharmacol. 3, 201 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Curnow, P. et al. Stable folding core in the folding transition state of an α-helical integral membrane protein. Proc. Natl. Acad. Sci. USA 108, 14133–14138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jefferson, R.E., Blois, T.M. & Bowie, J.U. Membrane proteins can have high kinetic stability. J. Am. Chem. Soc. 135, 15183–15190 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Otzen, D.E. Folding of DsbB in mixed micelles: a kinetic analysis of the stability of a bacterial membrane protein. J. Mol. Biol. 330, 641–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, B.L., Schafer, N.P. & Wolynes, P.G. Predictive energy landscapes for folding α-helical transmembrane proteins. Proc. Natl. Acad. Sci. USA 111, 11031–11036 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Urban, S. & Wolfe, M.S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. USA 102, 1883–1888 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Faham, S., Ujwal, R., Abramson, J. & Bowie, J.U. in Membrane Protein Crystallization 1st edn. Vol. 63 (eds. DeLucas, L.J.) 109–125 (Academic Press, 2009).

  51. Ujwal, R. & Bowie, J.U. Crystallizing membrane proteins using lipidic bicelles. Methods 55, 337–341 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Whitelegge, J.P. et al. Toward the bilayer proteome, electrospray ionization-mass spectrometry of large, intact transmembrane proteins. Proc. Natl. Acad. Sci. USA 96, 10695–10698 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kessler, D.A. & Rabin, Y. Distribution functions for filaments under tension. J. Chem. Phys. 121, 1155–1164 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Schwaiger, I., Sattler, C., Hostetter, D.R. & Rief, M. The myosin coiled-coil is a truly elastic protein structure. Nat. Mater. 1, 232–235 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Schuler, B., Lipman, E.A. & Eaton, W.A. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419, 743–747 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Yang, W.Y. & Gruebele, M. Folding at the speed limit. Nature 423, 193–197 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Rhoades, E., Cohen, M., Schuler, B. & Haran, G. Two-state folding observed in individual protein molecules. J. Am. Chem. Soc. 126, 14686–14687 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Kubelka, J., Hofrichter, J. & Eaton, W.A. The protein folding 'speed limit'. Curr. Opin. Struct. Biol. 14, 76–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Chung, H.S., Louis, J.M. & Eaton, W.A. Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories. Proc. Natl. Acad. Sci. USA 106, 11837–11844 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gebhardt, J.C.M., Bornschlogla, T. & Rief, M. Full distance-resolved folding energy landscape of one single protein molecule. Proc. Natl. Acad. Sci. USA 107, 2013–2018 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Creative Research Initiative Program (Center for Single-Molecule Systems Biology to T.-Y.Y.) funded by the National Research Foundation of Korea and Marine Biotechnology Program (20150220 to T.-Y.Y.) funded by the Ministry of Oceans and Fisheries of Korea, and supported by US National Institutes of Health grant 2R01GM063919 to J.U.B.

Author information

Authors and Affiliations

Authors

Contributions

D.M., R.E.J., J.U.B. and T.-Y.Y. designed the experiments. R.E.J. expressed and purified proteins. D.M. prepared the DNA-protein hybrid sample and performed the magnetic tweezers experiments. All of the authors analyzed the data and contributed to writing of the manuscript.

Corresponding authors

Correspondence to James U Bowie or Tae-Young Yoon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–10 and Supplementary Tables 1–3. (PDF 2696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, D., Jefferson, R., Bowie, J. et al. Mapping the energy landscape for second-stage folding of a single membrane protein. Nat Chem Biol 11, 981–987 (2015). https://doi.org/10.1038/nchembio.1939

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing