Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substrate-dependent switching of the allosteric binding mechanism of a dimeric enzyme

Abstract

Enzyme activity is commonly controlled by allostery, where ligand binding at one site alters the activities of distant sites. Classical explanations for multisubunit proteins involve conformational transitions that are fundamentally deterministic. For example, in the Monod-Wyman-Changeaux (MWC) paradigm, conformational transitions occur simultaneously in all subunits. In the Koshland-Nemethy-Filmer (KNF) paradigm, conformational transitions only occur in ligand-bound subunits. In contrast, recent models predict conformational changes that are governed by probabilities rather than absolute rules. To better understand allostery at the molecular level, we applied a recently developed spectroscopic and calorimetric method to the interactions of a dimeric enzyme with two different ligands. We found that conformational transitions appear MWC-like for a ligand that binds at the dimer interface and KNF-like for a distal ligand. These results provide strong experimental support for probabilistic allosteric theory predictions that an enzyme can exhibit a mixture of MWC and KNF character, with the balance partly governed by subunit interface energies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of homotropic allosteric models for a dimeric protein.
Figure 2: Thermodynamics of paromomycin and AcCoA binding to AAC(6′)-Ii.
Figure 3: Structural analysis of ligand binding.
Figure 4: Joint NMR-ITC analysis of binding.
Figure 5: Allosteric properties of the EAM plotted as a function of ΔGint and ΔGtrans.

Similar content being viewed by others

References

  1. Monod, J., Wyman, J. & Changeux, J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  PubMed  Google Scholar 

  2. Koshland, D.E., Nemethy, G. & Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365–385 (1966).

    Article  CAS  PubMed  Google Scholar 

  3. Gill, S.J., Robert, C.H., Coletta, M., Dicera, E. & Brunori, M. Cooperative free-energies for nested allosteric models as applied to human-hemoglobin. Biophys. J. 50, 747–752 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Daugherty, M.A. et al. Identification of the intermediate allosteric species in human hemoglobin reveals a molecular code for cooperative switching. Proc. Natl. Acad. Sci. USA 88, 1110–1114 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yifrach, O. & Horovitz, A. Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 34, 5303–5308 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Hilser, V.J. & Thompson, E.B. Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc. Natl. Acad. Sci. USA 104, 8311–8315 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hilser, V.J., Wrabl, J.O. & Motlagh, H.N. Structural and energetic basis of allostery. Annu. Rev. Biophys. 41, 585–609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duke, T.A.J., Le Novere, N. & Bray, D. Conformational spread in a ring of proteins: a stochastic approach to allostery. J. Mol. Biol. 308, 541–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Motlagh, H.N., Wrabl, J.O., Li, J. & Hilser, V.J. The ensemble nature of allostery. Nature 508, 331–339 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Motlagh, H.N. & Hilser, V.J. Agonism/antagonism switching in allosteric ensembles. Proc. Natl. Acad. Sci. USA 109, 4134–4139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Popovych, N., Sun, S.J., Ebright, R.H. & Kalodimos, C.G. Dynamically driven protein allostery. Nat. Struct. Mol. Biol. 13, 831–838 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tzeng, S.R. & Kalodimos, C.G. Dynamic activation of an allosteric regulatory protein. Nature 462, 368–372 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Cooper, A. & Dryden, D.T.F. Allostery without conformational change - a plausible model. Eur. Biophys. J. 11, 103–109 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. Pan, H., Lee, J.C. & Hilser, V.J. Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble. Proc. Natl. Acad. Sci. USA 97, 12020–12025 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Volkman, B.F., Lipson, D., Wemmer, D.E. & Kern, D. Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429–2433 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Gunasekaran, K., Ma, B.Y. & Nussinov, R. Is allostery an intrinsic property of all dynamic proteins? Proteins 57, 433–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Freiburger, L.A. et al. Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme. Nat. Struct. Mol. Biol. 18, 288–294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wright, G.D. & Ladak, P. Overexpression and characterization of the chromosomal aminoglycoside 6′-N-acetyltransferase from Enterococcus faecium. Antimicrob. Agents Chemother. 41, 956–960 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adler, A.J., Greenfield, N.J. & Fasman, G.D. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol. 27, 675–735 (1973).

    Article  CAS  PubMed  Google Scholar 

  20. Saxena, V.P. & Wetlaufer, D.B. A new basis for interpreting circular dichroic spectra of proteins. Proc. Natl. Acad. Sci. USA 68, 969–972 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Uversky, V.N. Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11, 739–756 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Burk, D.L., Ghuman, N., Wybenga-Groot, L.E. & Berghuis, A.M. X-ray structure of the AAC(6 ′)-Ii antibiotic resistance enzyme at 1.8 Å resolution; examination of oligomeric arrangements in GNAT superfamily members. Protein Sci. 12, 426–437 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burk, D.L., Xiong, B., Breitbach, C. & Berghuis, A.M. Structures of aminoglycoside acetyltransferase AAC(6 ′)-Ii in a novel crystal form: structural and normal-mode analyses. Acta Crystallogr. D Biol. Crystallogr. 61, 1273–1279 (2005).

    Article  PubMed  Google Scholar 

  24. Wybenga-Groot, L.E., Draker, K.-a., Wright, G.D. & Berghuis, A.M. Crystal structure of an aminoglycoside 6′-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Structure 7, 497–507 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Gao, F., Yan, X.X., Baettig, O.M., Berghuis, A.M. & Auclair, K. Regio- and chemoselective 6′-N-derivatization of aminoglycosides: Bisubstrate inhibitors as probes to study aminoglycoside 6′-N-acetyltransferases. Angew. Chem. Int. Ed. 44, 6859–6862 (2005).

    Article  CAS  Google Scholar 

  26. Eftink, M.R., Anusiem, A.C. & Biltonen, R.L. Enthalpy entropy compensation and heat capacity changes for protein ligand interactions: general thermodynamic models and data for the binding of nucleotides to ribonuclease A. Biochemistry 22, 3884–3896 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Spolar, R.S., Livingstone, J.R. & Record, M.T. Use of liquid-hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water. Biochemistry 31, 3947–3955 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Livingstone, J.R., Spolar, R.S. & Record, M.T. Contribution to the thermodynamics of protein folding from the reduction in water-accessible nonpolar surface-area. Biochemistry 30, 4237–4244 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Norris, A.L. & Serpersu, E.H. Antibiotic selection by the promiscuous aminoglycoside acetyltransferase-(3)-IIIb is thermodynamically achieved through the control of solvent rearrangement. Biochemistry 50, 9309–9317 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Özen, C., Norris, A.L., Land, M.L., Tjioe, E. & Serpersu, E.H. Detection of specific solvent rearrangement regions of an enzyme: NMR and ITC studies with aminoglycoside phosphotransferase(3′)-IIIa. Biochemistry 47, 40–49 (2008).

    Article  PubMed  Google Scholar 

  31. Ehlert, F.J. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol. Pharmacol. 33, 187–194 (1988).

    CAS  PubMed  Google Scholar 

  32. Wyman, J. On allosteric models. Curr. Top. Cell. Regul. 6, 209–226 (1972).

    Article  CAS  Google Scholar 

  33. Freiburger, L.A., Auclair, K. & Mittermaier, A.K. Van't Hoff global analyses of variable temperature isothermal titration calorimetry data. Thermochim. Acta 527, 148–157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Freiburger, L.A., Auclair, K. & Mittermaier, A.K. Elucidating protein binding mechanisms by variable-c ITC. ChemBioChem 10, 2871–2873 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marley, J., Lu, M. & Bracken, C. A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 20, 71–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Cavanagh, J., Fairbrother, W., Palmer, A. & Skelton, N. Protein NMR spectroscopy principles and practice (Academic Press, Inc., San Diego, 1996).

  37. Kay, L.E., Keifer, P. & Saarinen, T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10663–10665 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank G.D. Wright (McMaster University) for providing the AAC(6′)-Ii expression construct. This research was funded by operating grants from the Canadian Institutes of Health Research (CIHR MOP-89784) to K.A. and A.M. L.F. was supported through a CIHR training grant. A.B. holds a Canada Research Chair in Structural Biology. A.B. and A.M. are members of Groupe de Recherche Axé sur la Structure des Protéines (GRASP), which funds the NMR centre where the experiments were performed. NMR experiments were recorded at the Québec–Eastern Canada High Field NMR Facility, supported by McGill University and GRASP.

Author information

Authors and Affiliations

Authors

Contributions

A.M., K.A. and A.B. designed the experiments; L.F. collected and analyzed ITC and NMR data; T.M. analyzed NMR data; S.Z. collected and analyzed ITC data; O.B. analyzed X-ray crystallographic data; and A.M and L.F. wrote the paper.

Corresponding author

Correspondence to Anthony Mittermaier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2, Supplementary Notes 1–3 and Supplementary Figures 1–4. (PDF 679 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freiburger, L., Miletti, T., Zhu, S. et al. Substrate-dependent switching of the allosteric binding mechanism of a dimeric enzyme. Nat Chem Biol 10, 937–942 (2014). https://doi.org/10.1038/nchembio.1626

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1626

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing