Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

From helical to planar chirality by on-surface chemistry

Abstract

The chirality of molecular structures is paramount in many phenomena, including enantioselective reactions, molecular self-assembly, biological processes and light or electron-spin polarization. Flat prochiral molecules, which are achiral in the gas phase or solution, can exhibit adsorption-induced chirality when deposited on surfaces. The whole array of such molecular adsorbates is naturally racemic as spontaneous global mirror-symmetry breaking is disfavoured. Here we demonstrate a chemical method of obtaining flat prochiral molecules adsorbed on the solid achiral surface in such a way that a specific adsorbate handedness globally dominates. An optically pure helical precursor is flattened in a cascade of on-surface reactions, which enables chirality transfer. The individual reaction products are identified by high-resolution scanning-probe microscopy. The ultimate formation of globally non-racemic assemblies of flat molecules through stereocontrolled on-surface synthesis allows for chirality to be expressed in as yet unexplored types of organic–inorganic chiral interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed concept of global mirror-symmetry breaking in the system of prochiral molecules on an achiral substrate.
Figure 2: The enantiopure benzo[2,1-g:3,4-g′]dichrysene (P)-DBH on Ag(111) and changes in morphology of adsorbates on annealing at 520 and 670 K.
Figure 3: Transformation products P1, P2 and P3 of the annealing of (P)-DBH on Ag(111) at 520–670 K, and elucidation of their structures, calculated models and proposed reaction mechanism.
Figure 4: Distribution of the handednesses of the adsorbed products P1 and P2 after annealing the enantiopure (P)-DBH on Ag(111) at 520 K for 5 min.
Figure 5: The occurrence of the molecular adsorbates P1, P2 and P3 and % e.e. of P1 and P2 after annealing the enantiopure (P)-DBH on Ag(111) at various temperatures.

Similar content being viewed by others

References

  1. Blackmond, D. G. The origin of biological homochirality. Cold Spring Harb. Perspect. Biol. 2, a002147 (2010).

    Article  Google Scholar 

  2. Carreira, E. M. & Kvaerno, L. Classics in Stereoselective Synthesis (Wiley-VCH, 2009).

    Google Scholar 

  3. Temirov, R., Soubatch, S., Neucheva, O., Lassise, A. C. & Tautz, F. S. A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. New J. Phys. 10, 053012 (2008).

    Article  Google Scholar 

  4. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  Google Scholar 

  5. Gross, L. et al. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012).

    Article  CAS  Google Scholar 

  6. Hapala, P. et al. The mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

    Article  Google Scholar 

  7. Gourdon, A. On-surface covalent coupling in ultrahigh vacuum. Angew. Chem. Int. Ed. 47, 6950–6953 (2008).

    Article  CAS  Google Scholar 

  8. Méndez, J., López, M. F. & Martín-Gago, J. A. On-surface synthesis of cyclic organic molecules. Chem. Soc. Rev. 40, 4578–4590 (2011).

    Article  Google Scholar 

  9. Zhang, X., Zeng, Q. & Wang, C. On-surface single molecule synthesis chemistry: a promising bottom-up approach towards functional surfaces. Nanoscale 5, 8269–8287 (2013).

    Article  CAS  Google Scholar 

  10. de Oteyza, D. G. et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013).

    Article  CAS  Google Scholar 

  11. Pavliček, N. et al. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623–628 (2015).

    Article  Google Scholar 

  12. Demers-Carpentier, V. et al. Stereodirection of an α-ketoester at sub-molecular sites on chirally modified Pt(111): heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 135, 9999–10002 (2013).

    Article  CAS  Google Scholar 

  13. Amabilino, D. B. Chirality at the Nanoscale (Wiley-VCH, 2009).

    Book  Google Scholar 

  14. Barlow, S. M. & Raval, R. Complex organic molecules at metal surfaces: bonding, organisation and chirality. Surf. Sci. Rep. 50, 201–341 (2003).

    Article  CAS  Google Scholar 

  15. Ernst, K.-H. Molecular chirality at surfaces. Phys. Status Solidi B 249, 2057–2088 (2012).

    Article  CAS  Google Scholar 

  16. Eckhardt, C. J. et al. Separation of chiral phases in monolayer crystals of racemic amphiphiles. Nature 362, 614–616 (1993).

    Article  CAS  Google Scholar 

  17. Stöhr, M. et al. Self-assembly and two-dimensional spontaneous resolution of cyano-functionalized [7]helicenes on Cu(111). Angew. Chem. Int. Ed. 50, 9982–9986 (2011).

    Article  Google Scholar 

  18. Blüm, M.-C., Ćavar, E., Pivetta, M., Patthey, F. & Schneider, W.-D. Conservation of chirality in a hierarchical supramolecular self-assembled structure with pentagonal symmetry. Angew. Chem. Int. Ed. 44, 5334–5337 (2005).

    Article  Google Scholar 

  19. Sun, K. et al. Chiral pinwheel clusters lacking local point chirality. Small 8, 2078–2082 (2012).

    Article  CAS  Google Scholar 

  20. Parschau, M. et al. Buckybowls on metal surfaces: symmetry mismatch and enantiomorphism of corannulene on Cu(110). Angew. Chem. Int. Ed. 46, 8258–8261 (2007).

    Article  CAS  Google Scholar 

  21. Fasel, R., Parschau, M. & Ernst, K.-H. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 439, 449–452 (2006).

    Article  CAS  Google Scholar 

  22. Haq, S., Liu, N., Humblot, V., Jansen, A. P. J. & Raval, R. Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces. Nat. Chem. 1, 409–414 (2009).

    Article  CAS  Google Scholar 

  23. Parschau, M., Romer, S. & Ernst, K.-H. Induction of homochirality in achiral enantiomorphous monolayers. J. Am. Chem. Soc. 126, 15398–15399 (2004).

    Article  CAS  Google Scholar 

  24. Destoop, I. et al. ‘Sergeants-and-Corporals’ principle in chiral induction at an interface. Chem. Commun. 49, 7477–7479 (2013).

    Article  CAS  Google Scholar 

  25. Kündig, P. E. Transition Metal Arene π-Complexes in Organic Synthesis and Catalysis (Springer, 2004).

    Book  Google Scholar 

  26. Dai, L.-X. et al. Chiral Ferrocenes in Asymmetric Catalysis (Wiley-VCH, 2010).

    Google Scholar 

  27. Gleiter, R. et al. Modern Cyclophane Chemistry (Wiley-VCH, 2004).

    Book  Google Scholar 

  28. Jančařík, A. et al. Rapid access to dibenzohelicenes and their functionalized derivatives. Angew. Chem. Int. Ed. 52, 9970–9975 (2013).

    Article  Google Scholar 

  29. Pinardi, A. L. et al. Tailored formation of N-doped nanoarchitectures by diffusion-controlled on-surface (cyclo)dehydrogenation of heteroaromatics. ACS Nano 7, 3676–3684 (2013).

    Article  CAS  Google Scholar 

  30. Pinardi, A. L. et al. Sequential formation of N-doped nanohelicenes, nanographenes and nanodomes by surface-assisted chemical (cyclo)dehydrogenation of heteroaromatics. Chem. Commun. 50, 1555–1557 (2014).

    Article  CAS  Google Scholar 

  31. Seibel, J., Parschau, M. & Ernst, K.-H. Two-dimensional crystallization of enantiopure and racemic heptahelicene on Ag(111) and Au(111). J. Phys. Chem. C 118, 29135–29141 (2014).

    Article  CAS  Google Scholar 

  32. Seibel, J., Allemann, O., Siegel, J. S. & Ernst, K.-H. Chiral conflict among different helicenes suppresses formation of one enantiomorph in 2D crystallization. J. Am. Chem. Soc. 135, 7434–7437 (2013).

    Article  CAS  Google Scholar 

  33. Wang, D. Z., Katz, T. J., Golen, J. & Rheingold, A. L. Diels–Alder additions of benzynes within helicene skeletons. J. Org. Chem. 69, 7769–7771 (2004).

    Article  CAS  Google Scholar 

  34. Groen, M. B., Schadenberg, H. & Wynberg, H. Synthesis and resolution of some heterohelicenes. J. Org. Chem. 36, 2797–2809 (1971).

    Article  Google Scholar 

  35. Fuchter, M. J., Weimar, M., Yang, X., Judge, D. K. & White, A. J. P. An unusual oxidative rearrangement of [7]-helicene. Tetrahedron Lett. 53, 1108–1111 (2012).

    Article  CAS  Google Scholar 

  36. Berger, R. J. F. et al. Gold(I) mediated rearrangement of [7]-helicene to give a benzo[cd]pyrenium cation embedded in a chiral framework. Chem. Commun. 50, 5251–5253 (2014).

    Article  CAS  Google Scholar 

  37. Kichin, G., Weiss, C., Wagner, C., Tautz, F. S. & Temirov, R. Single molecule and single atom sensors for atomic resolution imaging of chemically complex surfaces. J. Am. Chem. Soc. 133, 16847–16851 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a Czech Science Foundation grant (14-29667S, 14-16963J) and by the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences (RVO: 61388963).

Author information

Authors and Affiliations

Authors

Contributions

P.J. and I.S. conceived the project and designed the experiments. O.S. and M.Š. performed and analysed the SPM experiments. A.J. synthesized racemic DBH, and J.R. resolved the racemic DBH into enantiomers. J.V.C., J.V., K.K. and P.J. performed theoretical calculations and interpreted their results. I.S. and I.G.S. interpreted the chemical transformations. P.J., O.S., M.Š., I.S. and I.G.S. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Pavel Jelínek or Ivo Starý.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stetsovych, O., Švec, M., Vacek, J. et al. From helical to planar chirality by on-surface chemistry. Nature Chem 9, 213–218 (2017). https://doi.org/10.1038/nchem.2662

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2662

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing