Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Homochiral polymerization-driven selective growth of graphene nanoribbons

Abstract

The surface-assisted bottom-up fabrication of graphene nanoribbons (GNRs), which consists of the radical polymerization of precursors followed by dehydrogenation, has attracted attention because of the method's ability to control the edges and widths of the resulting ribbon. Although these reactions on a metal surface are believed to be catalytic, the mechanism has remained unknown. Here, we demonstrate ‘conformation-controlled surface catalysis’: the two-zone chemical vapour deposition of a ‘Z-bar-linkage’ precursor, which represents two terphenyl units linked in a ‘Z’ shape, results in the efficient formation of acene-type GNRs with a width of 1.45 nm through optimized cascade reactions. These precursors exhibit flexibility that allows them to adopt chiral conformations with height asymmetry on a Au(111) surface, which enables the production of self-assembled homochiral polymers in a chain with a planar conformation, followed by dehydrogenation via a conformation-controlled mechanism. This is conceptually analogous to enzymatic catalysis and will be useful for the fabrication of new nanocarbon materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective growth of GNRs.
Figure 2: STM images of stepwise dehydrogenated chains and the dehydrogenation mechanism.
Figure 3: Mechanism of surface-induced homochiral polymerization in a chain.
Figure 4: FET characteristics of acene-type GNRs.

Similar content being viewed by others

References

  1. Chen, L., Hernandez, Y., Feng, X. & Müllen, K. From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012).

    Article  CAS  Google Scholar 

  2. Narita, A., Wang, X.-Y., Feng, X. & Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 44, 6616–6643 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, H. et al. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 137, 4022–4025 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Cai, J. et al. Graphene nanoribbon heterojunctions. Nat. Nanotech. 9, 896–900 (2014).

    Article  CAS  Google Scholar 

  8. Chen, Y.-C. et al. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotech. 10, 156–160 (2015).

    Article  CAS  Google Scholar 

  9. Linden, S. et al. Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 108, 216801 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Huang, H. et al. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci. Rep. 2, 983 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bronner, C. et al. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. 52, 4422–4425 (2013).

    Article  CAS  Google Scholar 

  12. Sakaguchi, H. et al. Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical-polymerized chemical vapor deposition. Adv. Mater. 26, 4134–4138 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    Article  CAS  Google Scholar 

  14. Hammer, B. & Nørskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    Article  CAS  Google Scholar 

  15. Björk, J., Stafström, S. & Hanke, F. Zipping up: cooperativity drives the synthesis of graphene nanoribbons. J. Am. Chem. Soc. 133, 14884–14887 (2011).

    Article  PubMed  CAS  Google Scholar 

  16. Blankenburg, S. et al. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons. ACS Nano 6, 2020–2025 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Treier, M. et al. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat. Chem. 3, 61–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Narita, A. et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, J. et al. Towards cove-edged low band gap graphene nanoribbons. J. Am. Chem. Soc. 137, 6097–6103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Magda, G. Z. et al. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608–611 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, L., Wang, L. & Beljonne, D. Designing coved graphene nanoribbons with charge carrier mobility approaching that of graphene. Carbon 77, 868–879 (2014).

    Article  CAS  Google Scholar 

  22. Garcia-Viloca, M., Gao, J., Karplus, M. & Truhlar, D. G. How enzymes work: analysis by modern rate theory and computer simulations. Science 303, 186–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Fersht, A. Structure and Mechanism in Protein Science Ch. 13 (Freeman, 1999).

    Google Scholar 

  24. Marsh, J. A. & Teichmann, S. A. Structure, dynamics, assembly, and evolution of protein complexes. Annu. Rev. Biochem. 84, 551–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Elemans, J. A. A. W., De Cat, I., Xu, H. & De Feyter, S. Two-dimensional chirality at liquid–solid interfaces. Chem. Soc. Rev. 38, 722–736 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Fasel, R., Parschau, M. & Ernst, K.-H. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 439, 449–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Lorenzo, M. O., Baddeley, C. J., Muryn, C. & Raval, R. Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules. Nature 404, 376–379 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Böhringer, M., Morgenstern, K., Schneider, W.-D. & Berndt, R. Separation of a racemic mixture of two-dimensional molecular clusters by scanning tunneling microscopy. Angew. Chem. Int. Ed. 38, 821–823 (1999).

    Article  Google Scholar 

  29. Chen, Q. & Richardson, N. V. Enantiomeric interactions between nucleic acid bases and amino acids on solid surfaces. Nat. Mater. 2, 324–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Weckesser, J., De Vita, A., Barth, J., Cai, C. & Kern, K. Mesoscopic correlation of supramolecular chirality in one-dimensional hydrogen-bonded assemblies. Phys. Rev. Lett. 87, 096101 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Okamoto, Y. & Nakano, T. Asymmetric polymerization. Chem. Rev. 94, 349–372 (1994).

    Article  CAS  Google Scholar 

  32. Nakano, T. & Okamoto, Y. Synthetic helical polymers: conformation and function. Chem. Rev. 101, 4013–4038 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Yashima, E. Synthesis and structure determination of helical polymers. Polym. J. 42, 3–16 (2010).

    Article  CAS  Google Scholar 

  34. Brintzinger, H. H., Fischer, D., Mülhaupt, R., Rieger, B. & Waymouth, R. M. Stereospecific olefin polymerization with chiral metallocene catalysts. Angew. Chem. Int. Ed. 34, 1143–1170 (1995).

    Article  CAS  Google Scholar 

  35. Castonguay, L. A. & Rappé, A. K. Ziegler–Natta catalysis. A theoretical study of the isotactic polymerization of propylene. J. Am. Chem. Soc. 114, 5832–5842 (1992).

    Article  CAS  Google Scholar 

  36. Chen, T.-A. & Rieke, R. D. The first regioregular head-to-tail poly (3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: Ni vs Pd catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization. J. Am. Chem. Soc. 114, 10087–10088 (1992).

    Article  CAS  Google Scholar 

  37. McCullough, R. D. The chemistry of conducting polythiophenes. Adv. Mater. 10, 93–116 (1998).

    Article  CAS  Google Scholar 

  38. Yang, L., Tan, X., Wang, Z. & Zhang, X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 155, 7196–7239 (2015).

    Article  CAS  Google Scholar 

  39. Kang, J. et al. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Ishida, Y. & Aida, T. Homochiral supramolecular polymerization of an ‘S’-shaped chiral monomer: translation of optical purity into molecular weight distribution. J. Am. Chem. Soc. 124, 14017–14019 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Guilleme, J. et al. Non-centrosymmetric homochiral supramolecular polymers of tetrahedral subphthalocyanine molecules. Angew. Chem. Int. Ed. 54, 2543–2547 (2015).

    Article  CAS  Google Scholar 

  43. Han, P. et al. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8, 9181–9187 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Lingenfelder, M. et al. Tracking the chiral recognition of adsorbed dipeptides at the single-molecule level. Angew. Chem. Int. Ed. 46, 4492–4495 (2007).

    Article  CAS  Google Scholar 

  45. Reichardt, C., Schroeder, J., Vöhringer, P. & Schwarzer, D. Unravelling the ultrafast photodecomposition mechanism of dibenzoyl peroxide in solution by time-resolved IR spectroscopy. Phys. Chem. Chem. Phys. 10, 1662–1668 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Matyjaszewski, K. Lifetimes of polystyrene chains in atom transfer radical polymerization. Macromolecules 32, 9051–9053 (1999).

    Article  CAS  Google Scholar 

  47. Wang, X. & Dai, H. Etching and narrowing of graphene from the edges. Nat. Chem. 2, 661–665 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Son, J. G. et al. Sub-10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography. Adv. Mater. 25, 4723–4728 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Bennett, P. B. et al. Bottom-up graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 103, 253114 (2013).

    Article  CAS  Google Scholar 

  51. Abbas, A. N. et al. Deposition, characterization, and thin-film-based chemical sensing of ultra-long chemically synthesized graphene nanoribbons. J. Am. Chem. Soc. 136, 7555–7558 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant-in-Aids for Scientific Research no. 26620101, Innovative Areas ‘Molecular Architectonics’ (2509) and ‘π-Figuration’ (2610), The Ministry of Education Culture, Sports, Science and Technology, Japan; ‘Zero-Emission Energy Research’ of the International Energy Agency, Kyoto University. Super Computer System, Institute for Chemical Research, Kyoto University was used for the calculations. We thank S. Fujita, N. Taira and M. Yano for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and T.N. conducted the synthesis, T.K. conducted the STM experiments and T.N. performed the theoretical calculations. H.S. supervised all experiments and wrote the main text, and T.N. wrote the Supplementary Information.

Corresponding author

Correspondence to Hiroshi Sakaguchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakaguchi, H., Song, S., Kojima, T. et al. Homochiral polymerization-driven selective growth of graphene nanoribbons. Nature Chem 9, 57–63 (2017). https://doi.org/10.1038/nchem.2614

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2614

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing