Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The scope and mechanism of palladium-catalysed Markovnikov alkoxycarbonylation of alkenes

Abstract

Hydroesterification reactions represent a fundamental type of carbonylation reaction and constitute one of the most important industrial applications of homogeneous catalysis. Over the past 70 years, numerous catalyst systems have been developed that allow for highly linear-selective (anti-Markovnikov) reactions and are used in industry to produce linear carboxylates starting from olefins. In contrast, a general catalyst system for Markovnikov-selective alkoxycarbonylation of aliphatic olefins remains unknown. In this paper, we show that a specific palladium catalyst system consisting of PdX2/N-phenylpyrrole phosphine (X, halide) catalyses the alkoxycarbonylation of various alkenes to give the branched esters in high selectivity (branched selectivity up to 91%). The observed (and unexpected) selectivity has been rationalized by density functional theory computation that includes a dispersion correction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Challenges and application potentials for the palladium-catalysed Markovnikov alkoxycarbonylation of alkenes.
Figure 2: Markovnikov alkoxycarbonylation of 1-octene using a range of different ligands.
Figure 3: DFT calculations.

Similar content being viewed by others

References

  1. Trost, B. M. Atom economy—a challenge for organic synthesis: homogeneous catalysis leads the way. Angew. Chem. Int. Ed. Engl. 34, 259–281 (1995).

    Article  CAS  Google Scholar 

  2. Markownikoff, W. I. Ueber die Abhängigkeit der verschiedenen Vertretbarkeit des Radicalwasserstoffs in den isomeren Buttersäuren. Justus Liebigs Ann. Chem. 153, 228–259 (1870).

    Article  Google Scholar 

  3. Huang, L., Arndt, M., Gooßen, K., Heydt, H. & Gooßen, L. J. Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev. 115, 2596–2697 (2015).

    Article  CAS  Google Scholar 

  4. Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F. & Tada, M. Hydroamination: direct addition of amines to alkenes and alkynes. Chem. Rev. 108, 3795–3892 (2008).

    Article  Google Scholar 

  5. Whittlesey, M. K. in Comprehensive Coordination Chemistry II (eds McCleverty, J. A. & Meyer, T. J.) 265–304 (Pergamon, 2003).

    Book  Google Scholar 

  6. Müller, T. E. & Beller, M. Metal-initiated amination of alkenes and alkynes. Chem. Rev. 98, 675–704 (1998).

    Article  Google Scholar 

  7. Beller, M., Seayad, J., Tillack, A. & Jiao, H. Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: recent developments and trends. Angew. Chem. Int. Ed. 43, 3368–3398 (2004).

    Article  CAS  Google Scholar 

  8. Mahatthananchai, J., Dumas, A. M. & Bode, J. W. Catalytic selective synthesis. Angew. Chem. Int. Ed. 51, 10954–10990 (2012).

    Article  CAS  Google Scholar 

  9. Weissermel, K. & Arpe, H.-J. Industrial Organic Chemistry 127–144 (Wiley-VCH, 2008).

    Google Scholar 

  10. Kégl, T. in Modern Carbonylation Methods (ed Kollár, L.) 161–198 (Wiley-VCH, 2008).

    Book  Google Scholar 

  11. Cornils, B. & Hermann, W. A. Applied Homogeneous Catalysis with Organometallic Compounds (Wiley-VCH, 2008).

    Google Scholar 

  12. El Ali, B. & Alper, H. in Handbook of Organopalladium Chemistry for Organic Synthesis (ed Negishi, E.-I.) 2333–2349 (John Wiley & Sons, 2003).

    Google Scholar 

  13. Franke, R., Selent, D. & Börner, A. Applied hydroformylation. Chem. Rev. 112, 5675–5732 (2012).

    Article  CAS  Google Scholar 

  14. Ali, B. E. & Alper, H. in Transition Metals for Organic Synthesis (eds Beller, M. & Bolm, C.) 113–132 (Wiley-VCH, 2008).

    Google Scholar 

  15. Beller, M., Cornils, B., Frohning, C. D. & Kohlpaintner, C. W. Progress in hydroformylation and carbonylation. J. Mol. Catal. A 104, 17–85 (1995).

    Article  CAS  Google Scholar 

  16. Jimenez Rodriguez, C., Foster, D. F., Eastham, G. R. & Cole-Hamilton, D. J. Highly selective formation of linear esters from terminal and internal alkenes catalysed by palladium complexes of bis-(di-tert-butylphosphinomethyl)benzene. Chem. Commun. 1720–1721 (2004).

  17. Kiss, G. Palladium-catalyzed Reppe carbonylation. Chem. Rev. 101, 3435–3456 (2001).

    Article  CAS  Google Scholar 

  18. Clegg, W. et al. Highly active and selective catalysts for the production of methyl propanoate via the methoxycarbonylation of ethene. Chem. Commun. 1877–1878 (1999).

  19. Jamie, T. & Durrani, M. L. C. in Stereoselective Synthesis of Drugs and Natural Products (eds Andrushko, N. & Andrushko, V.) Part 2, Ch. 14 (John Wiley & Sons, 2013).

    Google Scholar 

  20. Noonan, G. M., Cobley, C. J., Mahoney, T. & Clarke, M. L. Rhodium/phospholane–phosphite catalysts give unusually high regioselectivity in the enantioselective hydroformylation of vinyl arenes. Chem. Commun. 50, 1475–1477 (2014).

    Article  CAS  Google Scholar 

  21. Noonan, G. M., Fuentes, J. A., Cobley, C. J. & Clarke, M. L. An asymmetric hydroformylation catalyst that delivers branched aldehydes from alkyl alkenes. Angew. Chem. Int. Ed. 51, 2477–2480 (2012).

    Article  CAS  Google Scholar 

  22. Klosin, J. & Landis, C. R. Ligands for practical rhodium-catalyzed asymmetric hydroformylation. Acc. Chem. Res. 40, 1251–1259 (2007).

    Article  CAS  Google Scholar 

  23. Cavinato, G. & Toniolo, L. Metal in organic synthesis. VI. The solvent effect on the hydrocarbonalkoxylation of propene promoted by a [PdCl2(PPh3)2]−PPh3 catalyst precursor. J. Mol. Catal. 10, 161–170 (1981).

    Article  CAS  Google Scholar 

  24. Rucklidge, A. J., Morris, G. E. & Cole-Hamilton, D. J. Methoxycarbonylation of vinyl acetate catalysed by palladium complexes of bis(ditertiarybutylphosphinomethyl)benzene and related ligands. Chem. Commun. 1176–1178 (2005).

  25. Shuklov, I. A. et al. Promoters for Pd-catalyzed methoxycarbonylation of vinyl acetate. Arkivoc 66–75 (2012).

  26. Frew, J. J. R., Clarke, M. L., Mayer, U., Van Rensburg, H. & Tooze, R. P. Palladium complexes of new bulky fluorinated diphosphines give particularly active and regioselective catalysts for hydroxycarbonylation of styrene. Dalton Trans. 1976–1978 (2008).

  27. Fuentes, J. A., Slawin, A. M. Z. & Clarke, M. L. Application of palladium (trioxo-adamantyl cage phosphine)chloride complexes as catalysts for the alkoxycarbonylation of styrene; Pd catalysed tert-butoxycarbonylation of styrene. Catal. Sci. Technol. 2, 715–718 (2012).

    Article  CAS  Google Scholar 

  28. Grabulosa, A., Frew, J. J. R., Fuentes, J. A., Slawin, A. M. Z. & Clarke, M. L. Palladium complexes of bulky ortho-trifluoromethylphenyl-substituted phosphines: unusually regioselective catalysts for the hydroxycarbonylation and alkoxycarbonylation of alkenes. J. Mol. Catal. A 330, 18–25 (2010).

    Article  CAS  Google Scholar 

  29. Ooka, H., Inoue, T., Itsuno, S. & Tanaka, M. Highly active and selective palladium catalyst for hydroesterification of styrene and vinyl acetate promoted by polymeric sulfonic acids. Chem. Commun. 1173–1175 (2005).

  30. Liu, J., Liu, Q., Franke, R., Jackstell, R. & Beller, M. Ligand-controlled palladium-catalyzed alkoxycarbonylation of allenes: regioselective synthesis of α,β- and β,γ-unsaturated esters. J. Am. Chem. Soc. 137, 8556–8563 (2015).

    Article  CAS  Google Scholar 

  31. Konrad, T. M., Durrani, J. T., Cobley, C. J. & Clarke, M. L. Simultaneous control of regioselectivity and enantioselectivity in the hydroxycarbonylation and methoxycarbonylation of vinyl arenes. Chem. Commun. 49, 3306–3308 (2013).

    Article  CAS  Google Scholar 

  32. Guiu, E. et al. Electronic effect of diphosphines on the regioselectivity of the palladium-catalyzed hydroesterification of styrene. Organometallics 25, 3102–3104 (2006).

    Article  CAS  Google Scholar 

  33. Lee, C. W. & Alper, H. Hydroesterification of olefins catalyzed by Pd(OAc)2 immobilized on montmorillonite. J. Org. Chem. 60, 250–252 (1995).

    Article  CAS  Google Scholar 

  34. Alper, H., Woell, J. B., Despeyroux, B. & Smith, D. J. H. The regiospecific palladium catalysed hydrocarboxylation of alkenes under mild conditions. Chem. Commun. 1270–1271 (1983).

  35. Williams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. Aluminum triflate as a highly active and efficient nonprotic cocatalyst in the palladium-catalyzed methoxycarbonylation reaction. Angew. Chem. Int. Ed. 47, 560–563 (2008).

    Article  CAS  Google Scholar 

  36. Jørgensen, M., Lee, S., Liu, X., Wolkowski, J. P. & Hartwig, J. F. Efficient synthesis of α-aryl esters by room-temperature palladium-catalyzed coupling of aryl halides with ester enolates. J. Am. Chem. Soc. 124, 12557–12565 (2002).

    Article  Google Scholar 

  37. Wender, P. A., Koehler, M. F. T. & Sendzik, M. A new synthetic approach to the C ring of known as well as novel bryostatin analogues. Org. Lett. 5, 4549–4552 (2003).

    Article  CAS  Google Scholar 

  38. Crimmins, M. T., Carroll, C. A. & Wells, A. J. Pinacol-type rearrangements of intramolecular photocycloadducts: application of the 2,2-dimethyl-4-pentenoate protecting group. Tetrahedron Lett. 39, 7005–7008 (1998).

    Article  CAS  Google Scholar 

  39. Gauthier, D., Lindhardt, A. T., Olsen, E. P. K., Overgaard, J. & Skrydstrup, T. In situ generated bulky palladium hydride complexes as catalysts for the efficient isomerization of olefins. Selective transformation of terminal alkenes to 2-alkenes. J. Am. Chem. Soc. 132, 7998–8009 (2010).

    Article  CAS  Google Scholar 

  40. Larionov, E., Lin, L., Guénée, L. & Mazet, C. Scope and mechanism in palladium-catalyzed isomerizations of highly substituted allylic, homoallylic, and alkenyl alcohols. J. Am. Chem. Soc. 136, 16882–16894 (2014).

    Article  CAS  Google Scholar 

  41. Grushin, V. V. Hydrido complexes of palladium. Chem. Rev. 96, 2011–2034 (1996).

    Article  CAS  Google Scholar 

  42. Negishi, E.-I. in Handbook of Organopalladium Chemistry for Organic Synthesis (ed Negishi, E.-I.) 2783–2788 (John Wiley & Sons, 2003).

    Google Scholar 

  43. Elali, B. & Alper, H. Formic-acid palladium acetate-1,4-bis(diphenylphosphino)butane—an effective catalytic system for regioselective hydrocarboxylation of simple and functionalized olefins. J. Mol. Catal. 77, 7–13 (1992).

    Article  CAS  Google Scholar 

  44. Pugh, R. I., Drent, E. & Pringle, P. G. Tandem isomerisation–carbonylation catalysis: highly active palladium(II) catalysts for the selective methoxycarbonylation of internal alkenes to linear esters. Chem. Commun. 1476–1477 (2001).

  45. Surry, D. S. & Buchwald, S. L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user's guide. Chem. Sci. 2, 27–50 (2011).

    Article  CAS  Google Scholar 

  46. Zapf, A. et al. Practical synthesis of new and highly efficient ligands for the Suzuki reaction of aryl chlorides. Chem. Commun. 38–39 (2004).

  47. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  Google Scholar 

  48. Kumar, M., Chaudhari, R. V., Subramaniam, B. & Jackson, T. A. Ligand effects on the regioselectivity of rhodium-catalyzed hydroformylation: density functional calculations illuminate the role of long-range noncovalent interactions. Organometallics 33, 4183–4191 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Federal Ministry of Education and Research (BMBF) and Evonik Industries are acknowledged for their general support. K.D. acknowledges a Shanghai Institute of Organic Chemistry-Zhejiang Medicine joint fellowship for financial support. The analytic department of LIKAT is acknowledged. We are thankful to Q. Liu and X. Fang for the helpful and supportive discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.B. and H.L. conceived and designed the experiments. H.L. and K.D. performed the experiments and analysed the data. H.J. performed the DFT study. H.N. and R.J. participated in the discussions and supported the project. M.B., H.J. and H.L. co-wrote the paper.

Corresponding author

Correspondence to Matthias Beller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 12038 kb)

Supplementary information

Crystallographic data for compound L15_2_PdCl2. (CIF 941 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Dong, K., Jiao, H. et al. The scope and mechanism of palladium-catalysed Markovnikov alkoxycarbonylation of alkenes. Nature Chem 8, 1159–1166 (2016). https://doi.org/10.1038/nchem.2586

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2586

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing