Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst

Abstract

Fischer–Tropsch synthesis is a heterogeneous catalytic reaction that creates approximately 2% of the world's fuel. It involves the synthesis of linear hydrocarbon molecules from a gaseous mixture of carbon monoxide and hydrogen at high pressures (from a few to tens of bars) and high temperatures (200–350 °C). To gain further insight into the fundamental mechanisms of this industrial process, we have used a purpose-built scanning tunnelling microscope to monitor a cobalt model catalyst under reaction conditions. We show that, after 30 minutes of reaction, the terraces of the cobalt catalyst are covered by parallel arrays of stripes. We propose that the stripes are formed by the self-assembly of linear hydrocarbon product molecules. Surprisingly, the width of the stripes corresponds to molecules that are 14 or 15 carbon atoms long. We introduce a simple model that explains the accumulation of such long molecules by describing their monomer-by-monomer synthesis and explicitly accounting for their thermal desorption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning tunnelling topographic image of the clean single-crystal cobalt surface before exposure to the reactive gases but already at 221 °C and 4 bar total pressure.
Figure 2: Highly mobile cobalt surface under reaction conditions.
Figure 3: Image (and detail) of the cobalt surface fully covered by a striped pattern after 40 min of reaction.
Figure 4: Schematic scenario for the formation of the striped alkane phase during Fischer–Tropsch synthesis.
Figure 5: Terrace coverage of molecules of different lengths as a function of reaction time, and representation of the time required for the first molecular lengths to reach significant terrace coverages of 0.1 and 0.01, which condense to form the striped layer.

Similar content being viewed by others

References

  1. Van der Laan, G. P. & Beenacker, A. A. C. M. Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal. Rev. Sci. Eng. 41, 255–318 (1999).

    Article  CAS  Google Scholar 

  2. Chaumette, P., Courty, Ph., Kiennemann, A. & Ernst, B. Higher alcohol and paraffin synthesis on cobalt based catalysts: comparison of mechanistic aspects. Top. Catal. 2, 117–126 (1995).

    Article  CAS  Google Scholar 

  3. Anderson, R. B. The Fischer–Tropsch Synthesis (Academic, 1984).

    Google Scholar 

  4. Fischer, F. & Tropsch, H. Uber reduktion und hydrierung des Kohlenoxyds. Brennst. Chem. 7, 97 (1926).

    CAS  Google Scholar 

  5. Geerlings, I. J. C., Zonnevylle, M. C. & Groot, C. P. M. The Fischer–Tropsch reaction on a cobalt (0001) single crystal. Catal. Lett. 5, 309–314 (1990).

    Article  CAS  Google Scholar 

  6. Beitel, G. A., de Groot, C. P. M., Oosterbeek, H. & Wilson, J. H. A combined in-situ PM-RAIRS and kinetic study of single-crystal cobalt catalysts under synthesis gas at pressures up to 300 mbar. J. Phys. Chem. B 101, 4035–4043 (1997).

    Article  CAS  Google Scholar 

  7. Oosterbeek, H. Bridging the pressure and material gap in heterogeneous catalysis: cobalt Fischer–Tropsch catalysts from surface science to industrial application. Phys. Chem. Chem. Phys. 9, 3570–3576 (2007).

    Article  CAS  Google Scholar 

  8. Friedel, R. A. & Anderson, R. B. Composition of synthetic liquid fuels. I. Product distribution and analysis of C5-C8 paraffin isomers from cobalt catalyst. J. Am. Chem. Soc. 72, 1212–1215 (1950).

    Article  CAS  Google Scholar 

  9. Schulz, G. V. Uber die Bezeihung zwischen Reaktionsgeschwindigkeit und Zusammensetzung des Reaktionsproduktes bei Macropolymerisationsvorgangen. Z. Phys. Chem. B30, 379 (1935).

    Google Scholar 

  10. Flory, P. J. Molecular size distribution in linear condensation polymers. J. Am. Chem. Soc. 58, 1877–1885 (1936).

    Article  CAS  Google Scholar 

  11. Anderson, R. B., Seligman, B., Shultz, J. F., Kelly, R. & Elliott, M. A. Fischer–Tropsch synthesis. Some important variables of the synthesis on iron catalyst. Ind. Eng. Chem. 44, 391–397 (1952).

    Article  CAS  Google Scholar 

  12. Schulz, H. Major and minor reactions in Fischer–Tropsch synthesis on cobalt catalysts. Top. Catal. 26, 1–4 (2003).

    Article  CAS  Google Scholar 

  13. Herbschleb, C. C. T. et al. The reactorSTM: atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions. Rev. Sci. Instrum. 85, 083703 (2014).

    Article  CAS  Google Scholar 

  14. Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2014).

    Article  Google Scholar 

  15. Bartels, L., Meyer, G. & Rieder, K.-H. Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: a route to chemical contrast. Appl. Phys. Lett. 71, 213 (1997).

    Article  CAS  Google Scholar 

  16. Ehrensperger, M. & Wintterlin, J. In situ high-pressure high-temperature scanning tunneling microscopy of a Co(0001) Fischer–Tropsch model catalyst. J. Catal. 319, 274–282 (2014).

    Article  CAS  Google Scholar 

  17. Nakamura, S. Study of metallic carbides by electron diffraction part IV. Cobalt carbides. J. Phys. Soc. Jpn 16, 1213–1219 (1961).

    Article  Google Scholar 

  18. Bergerhoff, G. & Brown, I. D. in International Union of Crystallography (eds Allen, F. H. et al.) 77–95 (Chester, 1987).

    Google Scholar 

  19. Zhao, Y.-H., Su, H.-Y., Sun, K., Liu, J. & Li, W.-X. Structural and electronic properties of cobalt carbide Co2C and its surface stability: density functional theory study. Surf. Sci. 606, 598–604 (2012).

    Article  CAS  Google Scholar 

  20. Ehrensperger, M. & Wintterlin, J. In situ scanning tunneling microscopy of the poisoning of a Co(0001) Fischer–Tropsch model catalyst by sulfur. J. Catal. 329, 49–56 (2015).

    Article  CAS  Google Scholar 

  21. Knight, C. C. & Somorjai, G. A. Surface science studies of cobalt overlayers on clean and sulfur covered Mo(100) single crystal surfaces. Surf. Sci. 240, 101–111 (1990).

    Article  CAS  Google Scholar 

  22. Yamada, R. & Uosaki, K. Two-dimensional crystals of alkanes formed on Au(111) surface in neat liquid: structural investigation by scanning tunneling microscopy. J. Phys. Chem. B 104, 6021–6027 (2000).

    Article  CAS  Google Scholar 

  23. Uosaki, K. & Yamada, R. Formation of two-dimensional crystals of alkanes on the Au(111) surface in neat liquid. J. Am. Chem. Soc. 121, 4090–4091 (1999).

    Article  CAS  Google Scholar 

  24. Xie, Z. X., Xu, X., Tang, J. & Mao, B. W. Molecular packing in self-assembled monolayers of normal alkane on Au(111) surfaces. Chem. Phys. Lett. 323, 209–216 (2000).

    Article  CAS  Google Scholar 

  25. Marchenko, J. & Cousty, A. Substrate-induced freezing of alkane monolayers adsorbed on Au(111) dependent on the alkane/gold misfit. Surf. Sci. 520, 128–136 (2002).

    Article  Google Scholar 

  26. Weaver, J. F., Ikai, M., Carlsson, A. & Madix, R. J. Molecular adsorption and growth of n-butane adlayers on Pt(111). Surf. Sci. 470, 226–242 (2001).

    Article  CAS  Google Scholar 

  27. Berner, S. et al. Adsorption and two-dimensional phases of a large polar molecule: sub-phthalocyanine on Ag(111). Phys. Rev. B 68, 115410 (2003).

    Article  Google Scholar 

  28. Fichthorn, K. A. & Miron, R. A. Thermal desorption of large molecules from solid surfaces. Phys. Rev. Lett. 89, 196103 (2002).

    Article  Google Scholar 

  29. Wetterer, S. M., Lavrich, D. J., Cummings, T., Bernasek, S. L. & Scoles, G. Energetics and kinetics of the physisorption of hydrocarbons on Au(111). J. Phys. Chem. B 102, 9266–9275 (1998).

    Article  CAS  Google Scholar 

  30. Albers, P., Angert, H., Prescher, G., Seibold, K. & Parker, S. F. Catalyst poisoning by methyl groups. Chem. Commun. 1619–1620 (1999).

  31. Balandin, A. A. Modern state of the multiplet theory of heterogeneous catalysis. Adv. Catal. Rel. Sub. 19, 1–210 (1969).

    Article  CAS  Google Scholar 

  32. Cheng, J. & Hu, P. Utilization of the three-dimensional volcano surface to understand the chemistry of multiphase systems in heterogeneous catalysis. J. Am. Chem. Soc. 130, 10868–10869 (2008).

    Article  CAS  Google Scholar 

  33. Leendert Bezemer, G. et al. Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 128, 3956–3964 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

V.N. acknowledges the Netherlands Organization for Scientific Research (NWO) and the Technology Foundation (STW) for the financial support as part of the research programme Veni (project no. 11920). The authors acknowledge scientific discussions with A.P. van Bavel, H. Oosterbeek and H.P.C.E. Kuipers from Shell Global Solutions International B.V.

Author information

Authors and Affiliations

Authors

Contributions

J.W.M.F. and V.N. conceived the experiment, developed the analytical model and wrote the paper. V.N. designed and performed the experiment and analysed the results. M.A.v.S. assisted with experiments and commented on the manuscript.

Corresponding author

Correspondence to Violeta Navarro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro, V., van Spronsen, M. & Frenken, J. In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst. Nature Chem 8, 929–934 (2016). https://doi.org/10.1038/nchem.2613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing