Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly emissive platinum(II) metallacages

Subjects

Abstract

Light-emitting materials, especially those with tunable wavelengths, attract considerable attention for applications in optoelectronic devices, fluorescent probes, sensors and so on. Many species evaluated for these purposes either emit as a dilute solution or on aggregation, with the former often self-quenching at high concentrations, and the latter falling dark when aggregation is disrupted. Here we preserve emissive behaviour at both low- and high-concentration regimes for two discrete supramolecular coordination complexes (SCCs). These tetragonal prismatic SCCs are self-assembled on mixing a metal acceptor, Pt(PEt3)2(OSO2CF3)2, with two organic donors, a pyridyl-decorated tetraphenylethylene and one of two benzene dicarboxylate species. The rigid organization of these fluorescence-active ligands imparts an emissive behaviour to dilute solutions of the resulting assemblies. Furthermore, on aggregation the prisms exhibit variable-wavelength visible-light emission, including rare white-light emission in tetrahydrofuran. The favourable photophysical properties and solvent-dependent aggregation behaviour provide a means to tune emission wavelengths.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and characterization of tetragonal prisms 1 and 2.
Figure 2: AIE of 1 and 2.
Figure 3: Solvent effect on the light-emitting properties of 1 and 2.
Figure 4: Normalized fluorescence emission spectra and photograph (inset) of 2 in different ester solvents (λex = 355 nm, c = 10.0 μM).

Similar content being viewed by others

References

  1. Takashima, Y. et al. Molecular decoding using luminescence from an entangled porous framework. Nature Commun. 2, 168–175 (2011).

    Article  Google Scholar 

  2. Zhu, M. & Yang, C. Blue fluorescent emitter: design tactics and applications in organic light-emitting diodes. Chem. Soc. Rev. 42, 4963–4976 (2013).

    Article  CAS  Google Scholar 

  3. Stender, A. S. et al. Single cell optical imaging and spectroscopy. Chem. Rev. 113, 2469–2527 (2013).

    Article  CAS  Google Scholar 

  4. Maggini, L. & Bonifazi, D. Hierarchised luminescent organic architectures: design, synthesis, self-assembly, self-organisation and functions. Chem. Soc. Rev. 41, 211–241 (2012).

    Article  CAS  Google Scholar 

  5. Grimsdale, A. C. et al. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 109, 897–1091 (2009).

    Article  CAS  Google Scholar 

  6. Yang, S. K. et al. A dendritic single-molecule fluorescent probe that is monovalent, photostable and minimally blinking. Nature Chem. 5, 692–697 (2013).

    Article  CAS  Google Scholar 

  7. Hoeben, F. J. M. et al. About supramolecular assemblies of π-conjugated systems. Chem. Rev. 105, 1491–1546 (2005).

    Article  CAS  Google Scholar 

  8. Biedermann, F. et al. Strongly fluorescent, switchable perylene bis(diimide) host–guest complexes with cucurbit[8]uril in water. Angew. Chem. Int. Ed. 51, 7739–7743 (2012).

    Article  CAS  Google Scholar 

  9. Luo, J. et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsisole. Chem. Commun. 1740–1741 (2001).

  10. Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 4332–4353 (2009).

  11. Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 40, 5361–5388 (2011).

    Article  CAS  Google Scholar 

  12. Stang, P. J. & Olenyuk, B. Self-assembly, symmetry, and molecular architecture: coordination as the motif in the rational design of supramolecular metallacyclic polygons and polyhedra. Acc. Chem. Res. 30, 502–518 (1997).

    Article  CAS  Google Scholar 

  13. Leininger, S., Olenyuk, B. & Stang, P. J. Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem. Rev. 100, 853–908 (2000).

    Article  CAS  Google Scholar 

  14. Gianneschi, N. C., Masar, M. S. III & Mirkin, C. A. Development of a coordination chemistry-based approach for functional supramolecular structures. Acc. Chem. Res. 38, 825–837 (2005).

    Article  CAS  Google Scholar 

  15. Fujita, M., Tominaga, M., Hori, A. & Therrien, B. Coordination assemblies from a Pd(II)-cornered square complex. Acc. Chem. Res. 38, 369–378 (2005).

    Article  CAS  Google Scholar 

  16. Oliveri, C. G., Ulmann, P. A., Wiester, M. J. & Mirkin, C. A. Heteroligated supramolecular coordination complexes formed via the halide-induced ligand rearrangement reaction. Acc. Chem. Res. 41, 1618–1629 (2008).

    Article  CAS  Google Scholar 

  17. De, S., Mahata, K. & Schmittel, M. Metal-coordination-driven dynamic heteroleptic architectures. Chem. Soc. Rev. 39, 1555–1575 (2010).

    Article  CAS  Google Scholar 

  18. Chakrabarty, R., Mukherjee, P. S. & Stang, P. J. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011).

    Article  CAS  Google Scholar 

  19. Smulders, M. M., Riddell, I. A., Browne, C. & Nitschke, J. R. Building on architectural principles for three-dimensional metallosupramolecular construction. Chem. Soc. Rev. 42, 1728–1754 (2013).

    Article  CAS  Google Scholar 

  20. Yang, H-B. et al. A highly efficient approach to the self-assembly of hexagonal cavity-cored tris[2]pseudorotaxanes from several components via multiple noncovalent interactions. J. Am. Chem. Soc. 129, 14187–14189 (2007).

    Article  CAS  Google Scholar 

  21. Li, S. et al. Self-assembly of triangular and hexagonal molecular necklaces. J. Am. Chem. Soc. 136, 5908–5911 (2014).

    Article  CAS  Google Scholar 

  22. Black, S. P. et al. Generation of a dynamic system of three-dimensional tetrahedral polycatenanes. Angew. Chem. Int. Ed. 52, 5749–5752 (2013).

    Article  CAS  Google Scholar 

  23. Pluth, M. D., Bergman, R. G. & Raymond, K. N. Proton-mediated chemistry and catalysis in a self-assembled supramolecular host. Acc. Chem. Res. 42, 1650–1659 (2009).

    Article  CAS  Google Scholar 

  24. Inokuma, Y., Kawano, M. & Fujita, M. Crystalline molecular flasks. Nature Chem. 3, 349–358 (2011).

    Article  CAS  Google Scholar 

  25. Yan, X. et al. Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces. Proc. Natl Acad. Sci. USA 110, 15585–15590 (2013).

    Article  CAS  Google Scholar 

  26. Li, Z-Y. et al. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior. J. Am. Chem. Soc. 136, 8577–8589 (2014).

    Article  CAS  Google Scholar 

  27. Yan, X. et al. Dendronized organoplatinum(II) metallacyclic polymers constructed by hierarchical coordination-driven self-assembly and hydrogen-bonding interfaces. J. Am. Chem. Soc. 135, 16813–16816 (2013).

    Article  CAS  Google Scholar 

  28. Cook, T. R. et al. Biomedical and biochemical applications of self-assembled metallacycles and metallacages. Acc. Chem. Res. 46, 2464–2474 (2013).

    Article  CAS  Google Scholar 

  29. Kent, C. A., Liu, D., Meyer, T. J. & Lin, W. Amplified luminescence quenching of phosphorescent metal–organic frameworks. J. Am. Chem. Soc. 134, 3991–3994 (2012).

    Article  CAS  Google Scholar 

  30. Po, C., Tam, A. Y-Y., Wong, K. M-C. & Yam, V. W-W. Supramolecular self-assembly of amphiphilic anionic platinum(II) complexes: a correlation between spectroscopic and morphological properties. J. Am. Chem. Soc. 133, 12136–12143 (2011).

    Article  CAS  Google Scholar 

  31. Pollock, J. B. et al. Tunable visible light emission of self-assembled rhomboidal metallacycles. J. Am. Chem. Soc. 135, 13676–13679 (2013).

    Article  CAS  Google Scholar 

  32. Zhao, Z., Lam, J. W. Y. & Tang, B. Z. Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J. Mater. Chem. 22, 23726–23740 (2012).

    Article  CAS  Google Scholar 

  33. Shustova, N. B., McCarthy, B. D. & Dincă, M. Turn-on fluorescence in tetraphenylethylene-based metal–organic frameworks: an alternative to aggregation-induced emission. J. Am. Chem. Soc. 133, 20126–20129 (2011).

    Article  CAS  Google Scholar 

  34. Zhang, M. et al. Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 136, 7241–7244 (2014).

    Article  CAS  Google Scholar 

  35. Stock, N. & Biswas, S. Synthesis of metal–organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2011).

    Article  Google Scholar 

  36. Cook, T. R., Zheng, Y. R. & Stang, P. J. Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem. Rev. 113, 734–777 (2013).

    Article  CAS  Google Scholar 

  37. Zheng, Y-R. et al. A facile approach toward multicomponent supramolecular structures: selective self-assembly via charge separation. J. Am. Chem. Soc. 132, 16873–16882 (2010).

    Article  CAS  Google Scholar 

  38. Zhang, Y., Li, D., Li, Y. & Yu, J. Solvatochromic AIE luminogens as supersensitive water detectors in organic solvents and highly efficient cyanide chemosensors in water. Chem. Sci. 5, 2710–2716 (2014).

    Article  CAS  Google Scholar 

  39. Hu, R. et al. Twisted intramolecular charge transfer and aggregation-induced emission of BODIPY derivatives. J. Phys. Chem. C 113, 15845–15853 (2009).

    Article  CAS  Google Scholar 

  40. Abbel, R. et al. White-light emitting hydrogen-bonded supramolecular copolymers based on π-conjugated oligomers. J. Am. Chem. Soc. 131, 833–843 (2009).

    Article  CAS  Google Scholar 

  41. Ajayaghosh, A., Praveen, V. K., Vijayakumar, C. & George, S. J. Molecular wire encapsulated into π organogels: efficient supramolecular light-harvesting antennae with color-tunable emission. Angew. Chem. Int. Ed. 46, 6260–6265 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program (2013CB834502), the Natural Sciences Foundation of China (91027006, 21125417, 21434005) and the State Key Laboratory of Chemical Engineering. P.J.S. thanks the National Sciences Foundation (1212799) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

X.Y., F.H. and P.J.S. conceived and designed the experiments. X.Y., T.R.C. and P.W. performed the experiments and analysed the data. X.Y., T.R.C., F.H. and P.J.S. co-wrote the paper.

Corresponding authors

Correspondence to Feihe Huang or Peter J. Stang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1923 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Cook, T., Wang, P. et al. Highly emissive platinum(II) metallacages. Nature Chem 7, 342–348 (2015). https://doi.org/10.1038/nchem.2201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing