Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic, stereospecific syn-dichlorination of alkenes

Abstract

As some of the oldest organic chemical reactions known, the ionic additions of elemental halogens such as bromine and chlorine to alkenes are prototypical examples of stereospecific reactions, typically delivering vicinal dihalides resulting from anti-addition. Although the invention of enantioselective variants is an ongoing challenge, the ability to overturn the intrinsic anti-diastereospecificity of these transformations is also a largely unsolved problem. Here, we describe the first catalytic, syn-stereospecific dichlorination of alkenes, employing a group transfer catalyst based on a redox-active main group element (selenium). With diphenyl diselenide (PhSeSePh) (5 mol%) as the pre-catalyst, benzyltriethylammonium chloride (BnEt3NCl) as the chloride source and an N-fluoropyridinium salt as the oxidant, a wide variety of functionalized cyclic and acyclic 1,2-disubstituted alkenes, including simple allylic alcohols, deliver syn-dichlorides with exquisite stereocontrol. This methodology is expected to find applications in streamlining the synthesis of polychlorinated natural products such as the chlorosulfolipids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The vicinal dichloride motif in natural products.
Figure 2: Identification of E2 elimination by-products.
Figure 3: Proposed catalytic cycle for the selenium-catalysed syn-dichlorination of alkenes.

Similar content being viewed by others

References

  1. Atterberg, A. & Widman, O. Neue Chlornaphtaline. Ber. Dtsch. Chem. Ges. 10, 1841–1844 (1877).

    Article  Google Scholar 

  2. Poutsma, M. L. Chlorination of unsaturated compounds in nonpolar media. Science 157, 997–1005 (1967).

    Article  CAS  Google Scholar 

  3. Kharasch, M. S. & Brown, H. C. Chlorinations with sulfuryl chloride. II. The peroxide-catalyzed reaction of sulfuryl chloride with ethylenic compounds. J. Am. Chem. Soc. 61, 3432–3434 (1939).

    Article  CAS  Google Scholar 

  4. Tanner, D. T. & Gidley, G. C. Mechanism of the addition of chlorine to olefins with iodobenzene dichloride. J. Org. Chem. 33, 38–43 (1968).

    Article  CAS  Google Scholar 

  5. Schlama, T., Gabriel, K., Gouverneur, V. & Mioskowski, C. Tetraethylammonium trichloride: a versatile reagent for chlorinations and oxidations. Angew. Chem. Int. Ed. Engl. 36, 2342–2344 (1997).

    Article  CAS  Google Scholar 

  6. Kamada, Y., Kitamura, Y., Tanaka, T. & Yoshimitsu, T. Dichlorination of olefins with NCS/Ph3P. Org. Biomol. Chem. 11, 1598–1601 (2013).

    Article  CAS  Google Scholar 

  7. Ho, T-L., Gupta, B. G. B. & Olah, G. A. Synthetic methods and reactions; 39. Phase transfer catalyst promoted halogenation of alkenes with hydrohalic acid/hydrogen peroxide. Synthesis 676–677 (1977).

  8. Markó, I. E., Richardson, P. R., Bailey, M., Maguire, A. R. & Coughlan, N. Selective manganese-mediated transformations using the combination: KMnO4/Me3SiCl. Tetrahedron Lett. 38, 2339–2342 (1997).

    Article  Google Scholar 

  9. Ren, J. & Tong, R. Convenient in situ generation of various dichlorinating agents from oxone and chloride: diastereoselective dichlorination of allylic and homoallylic alcohol derivatives. Org. Biomol. Chem. 11, 4312–4315 (2013).

    Article  CAS  Google Scholar 

  10. Nilewski, C., Geisser, R. W. & Carreira, E. M. Total synthesis of a chlorosulpholipid cytotoxin associated with seafood poisoning. Nature 547, 573–576 (2009).

    Article  Google Scholar 

  11. Nilewski, C. & Carreira, E. M. Recent advances in the total synthesis of chlorosulfolipids. Eur. J. Org. Chem. 1685–1698 (2012).

  12. Chung, W-J. & Vanderwal, C. D. Approaches to the chemical synthesis of the chlorosulfolipids. Acc. Chem. Res. 47, 718–728 (2014).

    Article  CAS  Google Scholar 

  13. Chung, W-J., Carlson, J. S. & Vanderwal, C. D. General approach to the synthesis of the chlorosulfolipids danicalipin A, mytilipin A, and malhamensilipin A in enantioenriched form. J. Org. Chem. 79, 2226–2241 (2014).

    Article  CAS  Google Scholar 

  14. Umezawa, T. & Matsuda, F. Recent progress toward synthesis of chlorosulfolipids: total synthesis and methodology. Tetrahedron Lett. 55, 3003–3012 (2014).

    Article  CAS  Google Scholar 

  15. Nicolaou, K. C., Simmons, N. L., Ying, Y., Heretsch, P. M. & Chen, J. S. Enantioselective dichlorination of allylic alcohols. J. Am. Chem. Soc. 133, 8134–8137 (2011).

    Article  CAS  Google Scholar 

  16. Roberts, I. & Kimball, G. E. The halogenation of ethylenes. J. Am. Chem. Soc. 59, 947–948 (1937).

    Article  CAS  Google Scholar 

  17. Poutsma, M. L. Chlorination studies of unsaturated materials in nonpolar media. IV. The ionic pathway for alkylated ethylenes. Products and relative reactivities. J. Am. Chem. Soc. 87, 4285–4292 (1965).

    Article  CAS  Google Scholar 

  18. Uemura, S., Onoe, A. & Okano, M. The chlorination of olefins with antimony(V) chloride. Bull. Chem. Soc. Jpn 47, 692–697 (1974).

    Article  CAS  Google Scholar 

  19. Uemura, S., Onoe, A. & Okano, M. Molybdenum(V) chloride as a reagent for cis chlorination of olefins. Bull. Chem. Soc. Jpn 47, 3121–3124 (1974).

    Article  CAS  Google Scholar 

  20. San Filippo, J. S. Jr, Sowinski, A. F. & Romano, L. J. Chlorination of alkenes and alkynes with molybdenum(V) chloride. J. Am. Chem. Soc. 97, 1599–1600 (1975).

    Article  CAS  Google Scholar 

  21. Nugent, W. A. In situ-generated molybdenum(VI) reagent for cis-chlorination of alkenes. Tetrahedron Lett. 19, 3427–3430 (1978).

    Article  Google Scholar 

  22. Yoshimitsu, T., Fukumoto, N. & Tanaka, T. Enantiocontrolled synthesis of polychlorinated hydrocarbon motifs: a nucleophilic multiple chlorination process revisited. J. Org. Chem. 74, 696–702 (2009).

    Article  CAS  Google Scholar 

  23. Denton, R., Tang, X. & Przeslak, A. Catalysis of phosphorus(V)-mediated transformations: dichlorination reactions of epoxides under Appel conditions. Org. Lett. 12, 4678–4681 (2010).

    Article  CAS  Google Scholar 

  24. Nilewski, C., Geisser, R. W., Ebert, M-O. & Carreira, E. M. Conformational and configurational analysis in the study and synthesis of chlorinated natural products. J. Am. Chem. Soc. 131, 15866–15876 (2009).

    Article  CAS  Google Scholar 

  25. Garratt, D. G. & Schmid, G. H. The addition of arylselenium trichlorides vs. areneselenenyl chlorides to cis- and trans-1-phenylpropene. Can. J. Chem. 52, 3599–3606 (1974).

    Article  CAS  Google Scholar 

  26. Engman, L. Phenylselenium trichloride in organic synthesis. Reaction with unsaturated compounds. Preparation of vinylic chlorides via selenoxide elimination. J. Org. Chem. 52, 4086–4094 (1987).

    Article  CAS  Google Scholar 

  27. Paulmier, C. Inter and intramolecular nucleophilic substitution of activated phenylselanyl groups. Phosphorus Sulfur Silicon Relat. Elem. 172, 25–54 (2001).

    Article  Google Scholar 

  28. Morella, A. M. & Ward, D. A. The cis chlorination of alkenes using selenium reagents. Tetrahedron Lett. 25, 1197–1200 (1984).

    Article  CAS  Google Scholar 

  29. Morella, A. M. & Ward, D. A. Cis 1,2-functionalization of cyclohexane using selenium intermediates. Tetrahedron Lett. 26, 2899–2900 (1985).

    Article  CAS  Google Scholar 

  30. Hori, T. & Sharpless, K. B. Selenium-catalyzed nonradical chlorination of olefins with N-chlorosuccinimide. J. Org. Chem. 44, 4204–4208 (1979).

    Article  CAS  Google Scholar 

  31. Tunge, J. A. & Mellegaard, S. R. Selective selenocatalytic allylic chlorination. Org. Lett. 6, 1205–1207 (2004).

    Article  CAS  Google Scholar 

  32. Sharpless, K. B., Young, M. W. & Lauer, R. F. Reactions of selenoxides: thermal syn-elimination and H218O exchange. Tetrahedron Lett. 14, 1979–1982 (1973).

    Article  Google Scholar 

  33. Engle, K. M., Mei, T-S., Wang, X. & Yu, J-Q. Bystanding F+ oxidants enable selective reductive elimination from high-valent metal centers in catalysis. Angew. Chem. Int. Ed. 50, 1478–1491 (2011).

    Article  CAS  Google Scholar 

  34. Trenner, J., Depken, C., Weber, T. & Breder, A. Direct oxidative allylic and vinylic amination of alkenes through selenium catalysis. Angew. Chem. Int. Ed. 52, 8952–8956 (2013).

    Article  CAS  Google Scholar 

  35. Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).

    Book  Google Scholar 

  36. Syvret, R. G., Butt, K. M., Nguyen, T. P., Bulleck, V. L. & Rieth, R. D. Novel process for generating useful electrophiles from common anions using Selectfluor® fluorination agent. J. Org. Chem. 67, 4487–4493 (2002).

    Article  CAS  Google Scholar 

  37. Grunwald, E. Acetolysis rates of the cis- and trans-2-chloro- and 2-bromocyclohexyl p-bromobenzenesulfonates. J. Am. Chem. Soc. 73, 5458–5459 (1951).

    Article  CAS  Google Scholar 

  38. Lermontov, S. A. et al. Fluorination of olefins with PhSeF3, PhSeF5 and PhTeF5 . J. Fluorine Chem. 87, 75–83 (1998).

    Article  CAS  Google Scholar 

  39. Raamat, E. et al. Acidities of strong neutral Brønsted acids in different media. J. Phys. Org. Chem. 26, 162–170 (2013).

    Article  CAS  Google Scholar 

  40. Kaljurand, I., Rodima, T., Leito, I., Koppel, I. A. & Schwesinger, R. Self-consistent spectrophotometric basicity scale in acetonitrile covering the range between pyridine and DBU. J. Org. Chem. 65, 6202–6208 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Institutes of Health (GM R01-085235) for financial support. S.T-C.E. thanks the Agency for Science, Technology and Research of Singapore (A*STAR) for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

A.J.C. planned and carried out the experimental work and initial optimization. S.T-C.E. completed the experimental work and final characterizations. S.E.D. directed and coordinated the project. A.J.C. wrote the manuscript with the assistance of the other authors.

Corresponding author

Correspondence to Scott E. Denmark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cresswell, A., Eey, SC. & Denmark, S. Catalytic, stereospecific syn-dichlorination of alkenes. Nature Chem 7, 146–152 (2015). https://doi.org/10.1038/nchem.2141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing