Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetic blocking in a linear iron(I) complex

Abstract

Single-molecule magnets that contain one spin centre may represent the smallest possible unit for spin-based computational devices. Such applications, however, require the realization of molecules with a substantial energy barrier for spin inversion, achieved through a large axial magnetic anisotropy. Recently, significant progress has been made in this regard by using lanthanide centres such as terbium(III) and dysprosium(III), whose anisotropy can lead to extremely high relaxation barriers. We contend that similar effects should be achievable with transition metals by maintaining a low coordination number to restrict the magnitude of the d-orbital ligand-field splitting energy (which tends to hinder the development of large anisotropies). Herein we report the first two-coordinate complex of iron(I), [Fe(C(SiMe3)3)2], for which alternating current magnetic susceptibility measurements reveal slow magnetic relaxation below 29 K in a zero applied direct-current field. This S =  complex exhibits an effective spin-reversal barrier of Ueff = 226(4) cm−1, the largest yet observed for a single-molecule magnet based on a transition metal, and displays magnetic blocking below 4.5 K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation, structure and d-orbital splitting of the linear iron(I) complex [Fe(C(SiMe3)3)2].
Figure 2: Mössbauer spectra for crystalline 1 measured at 295 and 5 K.
Figure 3: Variable-temperature molar magnetic susceptibility and field-cooled versus zero-field cooled magnetization data.
Figure 4: Dynamic magnetic data for 1.
Figure 5: Variable-field magnetization data for 1.

Similar content being viewed by others

References

  1. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S-Y. & Kaizu, Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 125, 8694–8695 (2003).

    Article  CAS  Google Scholar 

  2. Rinehart, J. D. & Long, J. R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2, 2078–2085 (2011).

    Article  CAS  Google Scholar 

  3. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  4. Branzoli, F. et al. Spin dynamics in the negatively charge terbium(III) bis-phthalocyaninato complex. J. Am. Chem. Soc. 131, 4387–4396 (2009).

    Article  CAS  Google Scholar 

  5. Jiang, S-D., Wang, B-W., Sun, H-L., Wang, Z-M. & Gao, S. An organometallic single-ion magnet. J. Am. Chem. Soc. 133, 4730–4733 (2011).

    Article  CAS  Google Scholar 

  6. Gonidec, M. et al. Surface supramolecular organization of a terbium(III) double-decker complex on graphite and its single molecule magnet behavior. J. Am. Chem. Soc. 133, 6603–6612 (2011).

    Article  CAS  Google Scholar 

  7. Sessoli, R. et al. High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 115, 1804–1816 (1993).

    Article  CAS  Google Scholar 

  8. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal–ion cluster. Nature 365, 141–143 (1993).

    Article  CAS  Google Scholar 

  9. Milios, C. J. et al. A record anisotropy barrier for a single-molecule magnet. J. Am. Chem. Soc. 129, 2754–2755 (2007).

    Article  CAS  Google Scholar 

  10. Yoshihara, D., Karasawa, S. & Koga, N. Cyclic single-molecule magnet in heterospin system. J. Am. Chem. Soc. 130, 10460–10461 (2008).

    Article  CAS  Google Scholar 

  11. Mannini, M. et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nature Mater. 8, 194–197 (2009).

    Article  CAS  Google Scholar 

  12. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    Article  CAS  Google Scholar 

  13. Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201-1–057201-4 (2007).

    Article  Google Scholar 

  14. Stamp, P. C. E. & Gaita-Ariño, A. Spin-based quantum computers made by chemistry: hows and whys. J. Mater. Chem. 19, 1718–1730 (2009).

    Article  CAS  Google Scholar 

  15. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    Article  CAS  Google Scholar 

  16. Atanasov, M. et al. Detailed ab initio first-principles study of the magnetic anisotropy in a family of trigonal pyramidal iron(II) pyrrolide complexes. Inorg. Chem. 50, 7460–7477 (2011).

    Article  CAS  Google Scholar 

  17. Freedman, D. E. et al. Slow magnetic relaxation in a high-spin iron(II) complex. J. Am. Chem. Soc. 132, 1224–1225 (2010).

    Article  CAS  Google Scholar 

  18. Harman, W. H. et al. Slow magnetic relaxation in a family of trigonal pyramidal iron(II) pyrrolide complexes. J. Am. Chem. Soc. 132, 18115–18126 (2010).

    Article  CAS  Google Scholar 

  19. Weismann, D. et al. High-spin cyclopentadienyl complexes: a single-molecule magnet based on the aryl–iron(II) cyclopentadienyl type. Chem. Eur. J. 17, 4700–4704 (2011).

    Article  CAS  Google Scholar 

  20. Lin, P-H. et al. Importance of out-of-state spin–orbit coupling for slow magnetic relaxation in mononuclear FeII complexes. J. Am. Chem. Soc. 133, 15806–15809 (2011).

    Article  CAS  Google Scholar 

  21. Jurca, T. et al. Single-molecule magnet behavior with a single metal center enhanced through peripheral ligand modifications. J. Am. Chem. Soc. 133, 15814–15817 (2011).

    Article  CAS  Google Scholar 

  22. Vallejo, J. et al. Field-induced slow magnetic relaxation in a six-coordinate mononuclear cobalt(II) complex with a positive anisotropy. J. Am. Chem. Soc. 134, 15704–15707 (2012).

    Article  CAS  Google Scholar 

  23. Kramers, H. A. A general theory of paramagnetic rotation in crystals. Proc. R. Acad. Sci. Amsterdam 33, 959–972 (1930).

    CAS  Google Scholar 

  24. Zadrozny, J. M. & Long, J. R. Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2−. J. Am. Chem. Soc. 133, 20732–20734 (2011).

    Article  CAS  Google Scholar 

  25. Mossin, S. et al. A mononuclear Fe(III) single molecule magnet with a 3/2↔5/2 spin crossover. J. Am. Chem. Soc. 134, 13651–13661 (2012).

    Article  CAS  Google Scholar 

  26. Power, P. P. Stable two-coordinate, open-shell (d1d9) transition metal complexes. Chem. Rev. 112, 3482–3507 (2012).

    Article  CAS  Google Scholar 

  27. Reiff, W. M., LaPointe, A. M. & Witten, E. H. Virtual free ion magnetism and the absence of Jahn–Teller distortion in a linear two-coordinate complex of high-spin iron(II). J. Am. Chem. Soc. 126, 10206–10207 (2004).

    Article  CAS  Google Scholar 

  28. Reiff, W. M. et al. Consequences of a linear two-coordinate geometry for the orbital magnetism and Jahn–Teller distortion behavior of the high spin iron(II) complex Fe[N(t-Bu)2]2 . J. Am. Chem. Soc. 131, 404–405 (2009).

    Article  CAS  Google Scholar 

  29. Merrill, W. A. et al. Direct spectroscopic observation of large quenching of first-order orbital angular momentum with bending in monomeric, two-coordinate Fe(II) primary amido complexes and the profound magnetic effects of the absence of Jahn– and Renner–Teller distortions in rigorously linear coordination. J. Am. Chem. Soc. 131, 12695–12702 (2009).

    Article  Google Scholar 

  30. Zadrozny, J. M. et al. Slow magnetization dynamics in a series of two-coordinate iron(II) complexes. Chem. Sci. 4, 125–138 (2013).

    Article  CAS  Google Scholar 

  31. Atanasov, M. A., Zadrozny, J. M., Long, J. R. & Neese, F. A theoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(II) complexes with single-molecule magnet behavior. Chem. Sci. 4, 139–156 (2013).

    Article  CAS  Google Scholar 

  32. Eaborn, C., Hitchcock, P. B., Smith, J. D. & Sullivan, A. C. Crystal structure of the tetrahydrofuran adduct of tris(trimethylsilyl)-methyl-lithium, [Li(thf)4[Li{C(SiMe3)3}2]. J. Chem. Soc. Chem. Commun. 827–828 (1983).

  33. Eaborn, C., Hitchcock, P. B., Smith, J. D. & Sullivan, A. C. Preparation and crystal structure of the tetrahydrofuran adduct of lithium bis[tris(trimethylsilyl)methyl]cuprate, [Li(THF)4][Cu{C(SiMe3)3}2]. The first structural characterization of a Gilman reagent. J. Organomet. Chem. 263, C23–C25 (1984).

    Article  CAS  Google Scholar 

  34. Eaborn, C., Hitchcock, P. B., Smith, J. D. & Sullivan, A. C. Preparation and crystal structure of the argentate complex [Li(tetrahydrofuran)4][Ag{C{SiMe3)3}2]. J. Chem. Soc. Chem. Commun. 870–871 (1984).

  35. Al-Juaid, S. S. et al. Metalation of tris(trimethylsilyl)- and tris(dimethylphenylsilyl)methane with methylsodium: the first dialkylsodate. Angew. Chem. Int. Ed. Engl. 33, 1268–1270 (1994).

    Article  Google Scholar 

  36. LaPointe, A. M. Fe[C(SiMe3)3]2: synthesis and reactivity of a monomeric homoleptic iron(II) alkyl complex. Inorg. Chim. Acta 345, 359–362 (2003).

    Article  CAS  Google Scholar 

  37. Stoian, S. A. et al. Mössbauer, electron paramagnetic resonance, and crystallographic characterization of a high-spin Fe(I) diketiminate complex with orbital degeneracy. Inorg. Chem. 44, 4915–4922 (2005).

    Article  CAS  Google Scholar 

  38. Yu, Y. et al. The reactivity patterns of low-coordinate iron–hydride complexes. J. Am. Chem. Soc. 130, 6624–6638 (2008).

    Article  CAS  Google Scholar 

  39. Nakajima, Y. et al. Electronic structure of four-coordinate iron(I) complex supported by a bis(phosphaethenyl)pyridine ligand. J. Am. Chem. Soc. 132, 9934–9936 (2010).

    Article  CAS  Google Scholar 

  40. Carlin, R. Magnetochemistry (Springer, 1986).

    Book  Google Scholar 

  41. Gatteschi, D. & Sessoli, R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 42, 268–297 (2003).

    Article  CAS  Google Scholar 

  42. Luis, F. et al. Spin–lattice relaxation via quantum tunneling in an Er3+-polyoxometalate molecular magnet. Phys. Rev. B. 82, 060403(R) (2010).

    Article  Google Scholar 

  43. Meihaus, K. R., Rinehart, J. D. & Long, J. R. Dilution-induced slow magnetic relaxation and anomalous hysteresis in trigonal prismatic dysprosium(III) and uranium(III) complexes. Inorg. Chem. 50, 8484–8489 (2011).

    Article  CAS  Google Scholar 

  44. Rinehart, J. D. & Long, J. R. Slow magnetic relaxation in homoleptic trispyrazolylborate complexes of neodymium(III) and uranium(III). Dalton Trans. 41, 13572–13574 (2012).

    Article  CAS  Google Scholar 

  45. Rinehart, J. D., Fang, M., Evans, W. & Long, J. R. Strong exchange and magnetic blocking in N23− radical-bridged lanthanide complexes. Nature Chem. 3, 538–542 (2011).

    Article  CAS  Google Scholar 

  46. Demir, S., Zadrozny, J. M., Nippe, M. & Long, J. R. Exchange coupling and magnetic blocking in bipyrimidyl radical-bridged dilanthanide complexes. J. Am. Chem. Soc. 134, 18546–18549 (2012).

    Article  CAS  Google Scholar 

  47. Cole, K. S. & Cole, R. H. Dispersion and absorption in dielectrics. I. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science Foundation through grant CHE-1010002. We thank R. Nichiporuk for assistance with ESI/MS acquisition, T. Chantarojsiri, M. Nippe and S. Demir for experimental assistance and M. Fasulo for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.M.Z., D.J.X. and J.R.L. planned and executed the synthesis, characterization and magnetic measurements, and analysed the resulting data. M.A. and F.N. performed calculations and analysed the resulting data. G.J.L. and F.G. analysed the Mössbauer spectra. All authors were involved in writing the manuscript.

Corresponding author

Correspondence to Jeffrey R. Long.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4503 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zadrozny, J., Xiao, D., Atanasov, M. et al. Magnetic blocking in a linear iron(I) complex. Nature Chem 5, 577–581 (2013). https://doi.org/10.1038/nchem.1630

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1630

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing