Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase

Abstract

The anti-AIDS drug rilpivirine undergoes conformational changes to bind HIV-1 reverse transcriptase (RT), which is an essential enzyme for the replication of HIV. These changes allow it to retain potency against mutations that otherwise would render the enzyme resistant. Here we report that water molecules play an essential role in this binding process. Femtosecond experiments and theory expose the molecular level dynamics of rilpivirine bound to HIV-1 RT. Two nitrile substituents, one on each arm of the drug, are used as vibrational probes of the structural dynamics within the binding pocket. Two-dimensional vibrational echo spectroscopy reveals that one nitrile group is unexpectedly hydrogen-bonded to a mobile water molecule, not identified in previous X-ray structures. Ultrafast nitrile–water dynamics are confirmed by simulations. A higher (1.51 Å) resolution X-ray structure also reveals a water–drug interaction network. Maintenance of a crucial anchoring hydrogen bond may help retain the potency of rilpivirine against pocket mutations despite the structural variations they cause.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental linear infrared spectra of rilpivirine in solution and in complex to the different RT enzymes.
Figure 2: Absorptive 2D-IR spectra of the two investigated mutant/rilpivirine complexes at different waiting times.
Figure 3: Experimental peak-shift decays extracted from 2D-IR data as a function of waiting time.
Figure 4: The calculated radial distribution function g(r) highlights differences between the two nitrile groups of rilpivirine.
Figure 5: Snapshot of rilpivirine in the NNRTI-binding pocket of the WT-RT complex as observed in our MD simulations and X-ray crystal structure.
Figure 6: Simulated peak-shift and absorptive 2D-IR spectra of the WT-RT/rilpivirine complex for different waiting times.

Similar content being viewed by others

References

  1. Das, K. et al. High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations. Proc. Natl Acad. Sci. USA 105, 1466–1471 (2008).

    Article  CAS  Google Scholar 

  2. Bollini, M. et al. Computationally-guided optimization of a docking hit to yield catechol diethers as potent anti-HIV agents. J. Med. Chem. 54, 8582–8591 (2011).

    Article  CAS  Google Scholar 

  3. Mccoy, S. & Caughey, W. S. Infrared studies of azido, cyano, and other derivatives of metmyoglobin, methemoglobin, and hemins. Biochemistry 9, 2387–2393 (1970).

    Article  CAS  Google Scholar 

  4. Getahun, Z. et al. Using nitrile-derivatized amino acids as infrared probes of local environment. J. Am. Chem. Soc. 125, 405–411 (2003).

    Article  CAS  Google Scholar 

  5. Ghosh, A., Remorino, A., Tucker, M. J. & Hochstrasser, R. M. 2D-IR photon echo spectroscopy reveals hydrogen bond dynamics of aromatic nitriles. Chem. Phys. Lett. 469, 325–330 (2009).

    Article  CAS  Google Scholar 

  6. Kim, Y. S. & Hochstrasser, R. M. Chemical exchange 2D-IR of hydrogen-bond making and breaking. Proc. Natl Acad. Sci. USA 102, 11185–11190 (2005).

    Article  CAS  Google Scholar 

  7. Fang, C. et al. Two-dimensional infrared spectra reveal relaxation of the nonnucleoside inhibitor TMC278 complexed with HIV-1 reverse transcriptase. Proc. Natl Acad. Sci. USA 105, 1472–1477 (2008).

    Article  CAS  Google Scholar 

  8. Hamm, P., Lim, M. H. & Hochstrasser, R. M. Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy. J. Phys. Chem. B 102, 6123–6138 (1998).

    Article  CAS  Google Scholar 

  9. Hochstrasser, R. M. Two-dimensional spectroscopy at infrared and optical frequencies. Proc. Natl Acad. Sci. USA 104, 14190–14196 (2007).

    Article  CAS  Google Scholar 

  10. Finkelstein, I. J. et al. Probing dynamics of complex molecular systems with ultrafast 2D-IR vibrational echo spectroscopy. Phys. Chem. Chem. Phys. 9, 1533–1549 (2007).

    Article  CAS  Google Scholar 

  11. Ganim, Z. et al. Amide I two-dimensional infrared spectroscopy of proteins. Acc. Chem. Res. 41, 432–441 (2008).

    Article  CAS  Google Scholar 

  12. Andrews, S. S. & Boxer, S. G. Vibrational Stark effects of nitriles I. Methods and experimental results. J. Phys. Chem. A 104, 11853–11863 (2000).

    Article  CAS  Google Scholar 

  13. Andrews, S. S. & Boxer, S. G. Vibrational Stark effects of nitriles II. Physical origins of Stark effects from experiment and perturbation models. J. Phys. Chem. A 106, 469–477 (2002).

    Article  CAS  Google Scholar 

  14. Cho, M. H. et al. The integrated photon echo and solvation dynamics. J. Phys. Chem. 100, 11944–11953 (1996).

    Article  CAS  Google Scholar 

  15. DeBoeij, W. P., Pshenichnikov, M. S. & Wiersma, D. A. On the relation between the echo-peak shift and Brownian-oscillator correlation function. Chem. Phys. Lett. 253, 53–60 (1996).

    Article  CAS  Google Scholar 

  16. Kuo, C. H. & Hochstrasser, R. M. Two dimensional infrared spectroscopy and relaxation of aqueous cyanide. Chem. Phys. 341, 21–28 (2007).

    Article  CAS  Google Scholar 

  17. Choi, J. H. et al. Nitrile and thiocyanate IR probes: quantum chemistry calculation studies and multivariate least-square fitting analysis. J. Chem. Phys. 128, 134506 (2008).

    Article  Google Scholar 

  18. Kim, Y. S., Liu, L., Axelsen, P. H. & Hochstrasser, R. M. 2D-IR provides evidence for mobile water molecules in beta-amyloid fibrils. Proc. Natl Acad. Sci. USA 106, 17751–17756 (2009).

    Article  CAS  Google Scholar 

  19. Ghosh, A., Qiu, J., DeGrado, W. F. & Hochstrasser, R. M. Tidal surge in the M2 proton channel, sensed by 2D-IR spectroscopy. Proc. Natl Acad. Sci. USA 108, 6115–6120 (2011).

    Article  CAS  Google Scholar 

  20. Tucker, M. J. et al. 2D-IR photon echo of azido-probes for biomolecular dynamics. Phys. Chem. Chem. Phys. 13, 2237–2241 (2011).

    Article  CAS  Google Scholar 

  21. Kuroda, D. G., Vorobyev, D. Y. & Hochstrasser, R. M. Ultrafast relaxation and 2D-IR of the aqueous trifluorocarboxylate ion. J. Chem. Phys. 132, 044501 (2010).

    Article  Google Scholar 

  22. Bonner, G. M. et al. Probing the effect of the solution environment on the vibrational dynamics of an enzyme model system with ultrafast 2D-IR spectroscopy. Faraday Discuss. 145, 429–442 (2010).

    Article  CAS  Google Scholar 

  23. Schultz, K. C. et al. A genetically encoded infrared probe. J. Am. Chem. Soc. 128, 13984–13985 (2006).

    Article  CAS  Google Scholar 

  24. Kuroda, D. G. & Hochstrasser, R. M. Dynamic structures of aqueous oxalate and the effects of counterions seen by 2D-IR. Phys. Chem. Chem. Phys. 14, 6219–6224 (2012).

    Article  Google Scholar 

  25. Corcelli, S. A., Lawrence, C. P. & Skinner, J. L. Combined electronic structure/molecular dynamics approach for ultrafast infrared spectroscopy of dilute HOD in liquid H2O and D2O. J. Chem. Phys. 120, 8107–8117 (2004).

    Article  CAS  Google Scholar 

  26. Moller, K. B., Rey, R. & Hynes, J. T. Hydrogen bond dynamics in water and ultrafast infrared spectroscopy: a theoretical study. J. Phys. Chem. A 108, 1275–1289 (2004).

    Article  CAS  Google Scholar 

  27. Ge, N. H., Zanni, M. T. & Hochstrasser, R. M. Effects of vibrational frequency correlations on two-dimensional infrared spectra. J. Phys. Chem. A 106, 962–972 (2002).

    Article  CAS  Google Scholar 

  28. Bauman, J. D. et al. Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design. Nucleic Acids Res. 36, 5083–5092 (2008).

    Article  CAS  Google Scholar 

  29. Kim, Y. S., Wang, J. P. & Hochstrasser, R. M. Two-dimensional infrared spectroscopy of the alanine dipeptide in aqueous solution. J. Phys. Chem. B 109, 7511–7521 (2005).

    Article  CAS  Google Scholar 

  30. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  31. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  32. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  33. Case, D. A. et al. AMBER 11 (University of California, San Francisco, 2010).

  34. Wang, J. M., Cieplak, P. & Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049–1074 (2000).

    Article  CAS  Google Scholar 

  35. Wang, J. M. et al. Development and testing of a general AMBER force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  Google Scholar 

  36. Jorgensen, W. L. et al. comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Roitberg for advice on the MD simulations. This research was supported by National Institutes of Health (NIH) Grants GM12592 (to R.M.H.) and NIH MERIT Award R37 AI27690 (to E.A.) by using instrumentation developed in the Ultrafast Optical Process Laboratory NIH Grant P41RR001348/9P41GM104605. We acknowledge the Brookhaven National Laboratory X29 beamline facility for X-ray data collection and R.S.K. Vijayan for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

E.A. and R.M.H. conceived and designed the experiments. J.R.C. and T.T. performed the infrared experiments. D.G.K, J.R.C. and T.T. analysed the data. D.G.K. performed theoretical calculations and simulations. J.D.B. expressed and purified the protein samples and grew the crystals. J.D.B. and D.P. performed the X-ray data collection. J.D.B. and K.D. analysed and refined the crystal structure. D.G.K. and R.M.H. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Robin M. Hochstrasser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroda, D., Bauman, J., Challa, J. et al. Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nature Chem 5, 174–181 (2013). https://doi.org/10.1038/nchem.1559

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1559

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research