Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase-transfer-catalysed asymmetric synthesis of tetrasubstituted allenes

Abstract

Allenes are molecules based on three carbons connected by two cumulated carbon–carbon double bonds. Given their axially chiral nature and unique reactivity, substituted allenes have a variety of applications in organic chemistry as key synthetic intermediates and directly as part of biologically active compounds. Although the demands for these motivated many endeavours to make axially chiral, substituted allenes by exercising asymmetric catalysis, the catalytic asymmetric synthesis of fully substituted ones (tetrasubstituted allenes) remained largely an unsolved issue. The fundamental obstacle to solving this conundrum is the lack of a simple synthetic transformation that provides tetrasubstituted allenes in the action of catalysis. We report herein a strategy to overcome this issue by the use of a phase-transfer-catalysed asymmetric functionalization of 1-alkylallene-1,3-dicarboxylates with N-arylsulfonyl imines and benzylic and allylic bromides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for the catalytic asymmetric synthesis of tetrasubstituted allenes.
Figure 2: Derivatizations of the tetrasubstituted allenes.

Similar content being viewed by others

References

  1. Blaser, H. U. & Schmidt, E. Asymmetric Catalysis on Industrial Scale (Wiley, 2004).

    Google Scholar 

  2. Krause, N. & Hashmi A. S. K. Modern Allene Chemistry (Wiley, 2004).

    Book  Google Scholar 

  3. Yu, S. & Ma, S. Allenes in catalytic asymmetric synthesis and natural product syntheses. Angew. Chem. Int. Ed. 51, 3074–3112 (2012).

    Article  CAS  Google Scholar 

  4. Rivera-Fuentes, P. & Diederich, F. Allenes in molecular materials. Angew. Chem. Int. Ed. 51, 2818–2828 (2012).

    Article  CAS  Google Scholar 

  5. Krause, N. & Hoffmann-Röder, A. Synthesis of allenes with organometallic reagents. Tetrahedron 60, 11671–11694 (2004).

    Article  CAS  Google Scholar 

  6. Yu, S. & Ma, S. How easy are the syntheses of allenes? Chem. Commun. 47, 5384–5418 (2011).

    Article  CAS  Google Scholar 

  7. Ogasawara, M. Catalytic enantioselective synthesis of axially chiral allenes. Tetrahedron: Asymmetry 20, 259–271 (2009).

    Article  CAS  Google Scholar 

  8. Manzuna Sapu, C., Bäckvall, J-E. & Deska, J. Enantioselective enzymatic desymmetrization of prochiral allenic diols. Angew. Chem. Int. Ed. 50, 9731–9734 (2011).

    Article  Google Scholar 

  9. Boutier, A., Kammerer-Pentier, C., Krause, N., Prestat, G. & Poli, G. Pd-catalyzed asymmetric synthesis of N-allenyl amides and their Au-catalyzed cycloisomerizative hydroalkylation: a new route toward enantioenriched pyrrolidones. Chem. Eur. J. 18, 3840–3844 (2012).

    Article  CAS  Google Scholar 

  10. Wan, B. & Ma, S. Enantioselective decarboxylative amination: synthesis of axially chiral allenyl amines. Angew. Chem. Int. Ed. 52, 441–445 (2013).

    Article  CAS  Google Scholar 

  11. Maitland, P. & Mills, W. H. Experimental demonstration of the allene asymmetry. Nature 135, 994–994 (1935).

    Article  CAS  Google Scholar 

  12. Hayashi, T., Tokunaga, N. & Inoue, K. Rhodium-catalyzed asymmetric 1,6-addition of aryltitanates to enynones giving axially chiral allenes. Org. Lett. 6, 305–309 (2004).

    Article  CAS  Google Scholar 

  13. Bella, M. & Gasperi, T. Organocatalytic formation of quaternary stereocenters. Synthesis 1583–1614 (2009).

  14. Das, J. P. & Marek, I. Enantioselective synthesis of all-carbon quaternary stereogenic centers in acyclic systems. Chem. Commun. 47, 4593–4623 (2011).

    Article  CAS  Google Scholar 

  15. Shibasaki, M. & Kanai, M. Asymmetric synthesis of tertiary alcohols and α-tertiary amines via Cu-catalyzed C–C bond formation to ketones and ketimines. Chem. Rev. 108, 2853–2873 (2008).

    Article  CAS  Google Scholar 

  16. Petasis, N. A. & Teets, K. A. Enolates of α-allenyl ketones: formation and aldol reactions of cumulenolates. J. Am. Chem. Soc. 114, 10328–10334 (1992).

    Article  CAS  Google Scholar 

  17. Ooi, T. & Maruoka, K. Recent advances in asymmetric phase-transfer catalysis. Angew. Chem. Int. Ed. 45, 4222–4266 (2007).

    Article  Google Scholar 

  18. Hashimoto, T. & Maruoka, K. Recent development and application of chiral phase-transfer catalysts. Chem. Rev. 107, 5656–5682 (2007).

    Article  CAS  Google Scholar 

  19. Suárez, A. & Fu, G. C. A straightforward and mild synthesis of functionalized 3-alkynoates. Angew. Chem. Int. Ed. 43, 3580–3582 (2004).

    Article  Google Scholar 

  20. Hassink, M., Liu, X. & Fox, J. M. Copper-catalyzed synthesis of 2,4-disubstituted allenoates from α-diazoesters. Org. Lett. 13, 2388–2391 (2011).

    Article  CAS  Google Scholar 

  21. Xiao, Q., Xia, Y., Li, H., Zhang, Y. & Wang, J. Coupling of N-tosylhydrazones with terminal alkynes catalyzed by copper(I): synthesis of trisubstituted allenes. Angew. Chem. Int. Ed. 50, 1114–1117 (2011).

    Article  CAS  Google Scholar 

  22. Hashimoto, T., Sakata, K. & Maruoka, K. α-Chiral acetylenes having an all-carbon quaternary center: phase transfer catalyzed enantioselective α-alkylation of α-alkyl-α-alkynyl esters. Angew. Chem. Int. Ed. 48, 5014–5017 (2009).

    Article  CAS  Google Scholar 

  23. Xu, B. & Hammond, G. B. Thermodynamically favored aldol reaction of propargyl or allenyl esters: regioselective synthesis of carbinol allenoates. Angew. Chem. Int. Ed. 47, 689–692 (2008).

    Article  CAS  Google Scholar 

  24. Xu, B. & Hammond, G. B. From vinylogation to alkynylogation: extending the reactivity of enolates. Synlett 2010, 1442–1454 (2010).

    Article  Google Scholar 

  25. Kobayashi, S., Mori, Y., Fossey, J. S. & Salter, M. M. Catalytic enantioselective formation of C–C bonds by addition to imines and hydrazones: a ten-year update. Chem. Rev. 111, 2626–2704 (2011).

    Article  CAS  Google Scholar 

  26. Álvarez-Corral, M., Muñoz-Dorado, M. & Rodríguez-García, I. Silver-mediated synthesis of heterocycles. Chem. Rev. 108, 3174–3198 (2008).

    Article  Google Scholar 

  27. Alcaide, B. & Almendros, P. Novel cyclization reactions of aminoallenes. Adv. Synth. Catal. 353, 2561–2576 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. K.S. and M.J.D. thank the Japan Society for Promotion of Science and the Great Britain Sasakawa Foundation, respectively, for fellowships, respectively.

Author information

Authors and Affiliations

Authors

Contributions

T.H. conceived the study and wrote the manuscript. K.S. principally performed the experiments. F.T. and M.J.D. performed experiments on alkylation. K.M. organized the research. All authors contributed to designing the experiments, analysing data and editing the manuscript.

Corresponding author

Correspondence to Keiji Maruoka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 33465 kb)

Supplementary information

Crystallographic data for compound 6e. (CIF 44 kb)

Supplementary information

Crystallographic data for compound 17. (CIF 49 kb)

Supplementary information

Crystallographic data for compound 11. (CIF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, T., Sakata, K., Tamakuni, F. et al. Phase-transfer-catalysed asymmetric synthesis of tetrasubstituted allenes. Nature Chem 5, 240–244 (2013). https://doi.org/10.1038/nchem.1567

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing