Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy

Abstract

Biomacromolecules that are challenging for the usual structural techniques can be studied with atomic resolution by solid-state NMR spectroscopy. However, the paucity of distance restraints >5 Å, traditionally derived from measurements of magnetic dipole–dipole couplings between protein nuclei, is a major bottleneck that hampers such structure elucidation efforts. Here, we describe a general approach that enables the rapid determination of global protein fold in the solid phase via measurements of nuclear paramagnetic relaxation enhancements (PREs) in several analogues of the protein of interest containing covalently attached paramagnetic tags, without the use of conventional internuclear distance restraints. The method is demonstrated using six cysteine–EDTA–Cu2+ mutants of the 56-residue B1 immunoglobulin-binding domain of protein G, for which ~230 longitudinal backbone 15N PREs corresponding to distances of ~10–20 Å were obtained. The mean protein fold determined in this manner agrees with the X-ray structure with a backbone atom root-mean-square deviation of 1.8 Å.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determination of longitudinal backbone amide 15N PREs in Cys–EDTA–Cu2+ GB1 mutants by solid-state NMR spectroscopy.
Figure 2: Results of idealized preliminary structure calculations for GB1 in the absence and presence of solid-state NMR longitudinal 15N PRE restraints.
Figure 3: De novo calculation of the GB1 fold using solid-state NMR longitudinal 15N PRE restraints.

Similar content being viewed by others

References

  1. Wüthrich, K. NMR studies of structure and function of biological macromolecules (Nobel lecture). Angew. Chem. Int. Ed. 42, 3340–3363 (2003).

    Article  Google Scholar 

  2. Lange, A. et al. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440, 959–962 (2006).

    Article  CAS  Google Scholar 

  3. Cady, S. D. et al. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463, 689–692 (2010).

    Article  CAS  Google Scholar 

  4. Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005).

    Article  CAS  Google Scholar 

  5. Wasmer, C. et al. Amyloid fibrils of the HET-s(218–289) prion form a β solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008).

    Article  CAS  Google Scholar 

  6. Castellani, F. et al. Structure of a protein determined by solid-state magic-angle spinning NMR spectroscopy. Nature 420, 98–102 (2002).

    Article  CAS  Google Scholar 

  7. Zech, S. G., Wand, A. J. & McDermott, A. E. Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. J. Am. Chem. Soc. 127, 8618–8626 (2005).

    Article  CAS  Google Scholar 

  8. Loquet, A. et al. 3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. J. Am. Chem. Soc. 130, 3579–3589 (2008).

    Article  CAS  Google Scholar 

  9. Manolikas, T., Herrmann, T. & Meier, B. H. Protein structure determination from 13C spin-diffusion solid-state NMR spectroscopy. J. Am. Chem. Soc. 130, 3959–3966 (2008).

    Article  CAS  Google Scholar 

  10. Korukottu, J. et al. High-resolution 3D structure determination of kaliotoxin by solid-state NMR spectroscopy. PLoS ONE 3, e2359 (2008).

    Article  Google Scholar 

  11. Franks, W. T. et al. Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR. Proc. Natl Acad. Sci. USA 105, 4621–4626 (2008).

    Article  CAS  Google Scholar 

  12. De Paëpe, G., Lewandowski, J. R., Loquet, A., Böckmann, A. & Griffin, R. G. Proton assisted recoupling and protein structure determination. J. Chem. Phys. 129, 245101 (2008).

    Article  Google Scholar 

  13. Robustelli, P., Cavalli, A. & Vendruscolo, M. Determination of protein structures in the solid state from NMR chemical shifts. Structure 16, 1764–1769 (2008).

    Article  CAS  Google Scholar 

  14. Shen, Y., Vernon, R., Baker, D. & Bax, A. De novo protein structure generation from incomplete chemical shift assignments. J. Biomol. NMR 43, 63–78 (2009).

    Article  CAS  Google Scholar 

  15. Nieuwkoop, A. J., Wylie, B. J., Franks, W. T., Shah, G. J. & Rienstra, C. M. Atomic resolution protein structure determination by three-dimensional transferred echo double resonance solid-state nuclear magnetic resonance spectroscopy. J. Chem. Phys. 131, 095101 (2009).

    Article  Google Scholar 

  16. Zhang, Y. et al. Resonance assignment and three-dimensional structure determination of a human alpha-defensin, HNP-1, by solid-state NMR. J. Mol. Biol. 397, 408–422 (2010).

    Article  CAS  Google Scholar 

  17. Jehle, S. et al. Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers. Nature Struct. Mol. Biol. 17, 1037–1042 (2010).

    Article  CAS  Google Scholar 

  18. Linser, R., Bardiaux, B., Higman, V., Fink, U. & Reif, B. Structure calculation from unambiguous long-range amide and methyl 1H–1H distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy. J. Am. Chem. Soc. 133, 5905–5912 (2011).

    Article  CAS  Google Scholar 

  19. Huber, M. et al. A proton-detected 4D solid-state NMR experiment for protein structure determination. ChemPhysChem 12, 915–918 (2011).

    Article  CAS  Google Scholar 

  20. Helmus, J. J., Nadaud, P. S., Höfer, N. & Jaroniec, C. P. Determination of methyl 13C–15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy. J. Chem. Phys. 128, 052314 (2008).

    Article  Google Scholar 

  21. Jaroniec, C. P., Filip, C. & Griffin, R. G. 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon–nitrogen distances in uniformly 13C,15N-labeled solids. J. Am. Chem. Soc. 124, 10728–10742 (2002).

    Article  CAS  Google Scholar 

  22. Takegoshi, K., Nakamura, S. & Terao, T. 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem. Phys. Lett. 344, 631–637 (2001).

    Article  CAS  Google Scholar 

  23. Lange, A., Luca, S. & Baldus, M. Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. J. Am. Chem. Soc. 124, 9704–9705 (2002).

    Article  CAS  Google Scholar 

  24. Solomon, I. Relaxation processes in a system of two spins. Phys. Rev. 99, 559–565 (1955).

    Article  CAS  Google Scholar 

  25. Bertini, I., Luchinat, C. & Parigi, G. Solution NMR of Paramagnetic Molecules: Applications to Metallobiomolecules and Models (Elsevier, 2001).

    Google Scholar 

  26. Gillespie, J. R. & Shortle, D. Characterization of long-range structure in the denatured state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J. Mol. Biol. 268, 170–184 (1997).

    Article  CAS  Google Scholar 

  27. Battiste, J. L. & Wagner, G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39, 5355–5365 (2000).

    Article  CAS  Google Scholar 

  28. Gaponenko, V. et al. Protein global fold determination using site-directed spin and isotope labeling. Protein Sci. 9, 302–309 (2000).

    Article  CAS  Google Scholar 

  29. Pintacuda, G. et al. Solid-state NMR spectroscopy of a paramagnetic protein: assignment and study of human dimeric oxidized CuII–ZnII superoxide dismutase (SOD). Angew. Chem. Int. Ed. 46, 1079–1082 (2007).

    Article  CAS  Google Scholar 

  30. Balayssac, S., Bertini, I., Lelli, M., Luchinat, C. & Maletta, M. Paramagnetic ions provide structural restraints in solid-state NMR of proteins. J. Am. Chem. Soc. 129, 2218–2219 (2007).

    Article  CAS  Google Scholar 

  31. Balayssac, S., Bertini, I., Bhaumik, A., Lelli, M. & Luchinat, C. Paramagnetic shifts in solid-state NMR of proteins to elicit structural information. Proc. Natl Acad. Sci. USA 105, 17284–17289 (2008).

    Article  CAS  Google Scholar 

  32. Bertini, I. et al. High-resolution solid-state NMR structure of a 17.6 kDa protein. J. Am. Chem. Soc. 132, 1032–1040 (2010).

    Article  CAS  Google Scholar 

  33. Nadaud, P. S., Helmus, J. J., Höfer, N. & Jaroniec, C. P. Long-range structural restraints in spin-labeled proteins probed by solid-state nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 129, 7502–7503 (2007).

    Article  CAS  Google Scholar 

  34. Nadaud, P. S., Helmus, J. J., Kall, S. L. & Jaroniec, C. P. Paramagnetic ions enable tuning of nuclear relaxation rates and provide long-range structural restraints in solid-state NMR of proteins. J. Am. Chem. Soc. 131, 8108–8120 (2009).

    Article  CAS  Google Scholar 

  35. Nadaud, P. S., Helmus, J. J., Sengupta, I. & Jaroniec, C. P. Rapid acquisition of multidimensional solid-state NMR spectra of proteins facilitated by covalently bound paramagnetic tags. J. Am. Chem. Soc. 132, 9561–9563 (2010).

    Article  CAS  Google Scholar 

  36. Nadaud, P. S., Sengupta, I., Helmus, J. J. & Jaroniec, C. P. Evaluation of the influence of intermolecular electron–nucleus couplings and intrinsic metal binding sites on the measurement of 15N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR. J. Biomol. NMR 51, 293–302 (2011).

    Article  CAS  Google Scholar 

  37. Ermácora, M. R., Delfino, J. M., Cuenoud, B., Schepartz, A. & Fox, R. O. Conformation-dependent cleavage of staphylococcal nuclease with a disulfide-linked iron chelate. Proc. Natl Acad. Sci. USA 89, 6383–6387 (1992).

    Article  Google Scholar 

  38. Hubbell, W. L. & Altenbach, C. Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr. Opin. Struct. Biol. 4, 566–573 (1994).

    Article  CAS  Google Scholar 

  39. Schwieters, C. D., Kuszewski, J. J., Tjandra, N. & Clore, G. M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    Article  CAS  Google Scholar 

  40. Gallagher, T., Alexander, P., Bryan, P. & Gilliland, G. L. Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry 33, 4721–4729 (1994).

    Article  CAS  Google Scholar 

  41. Franks, W. T., Wylie, B. J., Stellfox, S. A. & Rienstra, C. M. Backbone conformational constraints in a microcrystalline U–15N-labeled protein by 3D dipolar-shift solid-state NMR spectroscopy. J. Am. Chem. Soc. 128, 3154–3155 (2006).

    Article  CAS  Google Scholar 

  42. Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009).

    Article  CAS  Google Scholar 

  43. Rost, B. & Sander, C. Conservation and prediction of solvent accessibility in protein families. Proteins 20, 216–226 (1994).

    Article  CAS  Google Scholar 

  44. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  45. Iwahara, J., Schwieters, C. D. & Clore, G. M. Ensemble approach for NMR structure refinement against 1H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J. Am. Chem. Soc. 126, 5879–5896 (2004).

    Article  CAS  Google Scholar 

  46. Kuszewski, J., Gronenborn, A. M. & Clore, G. M. Improving the packing and accuracy of NMR structures with a pseudopotential for the radius of gyration. J. Am. Chem. Soc. 121, 2337–2338 (1999).

    Article  CAS  Google Scholar 

  47. Kuszewski, J., Gronenborn, A. M. & Clore, G. M. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Protein Sci. 5, 1067–1080 (1996).

    Article  CAS  Google Scholar 

  48. Grishaev, A. & Bax, A. An empirical backbone–backbone hydrogen-bonding potential in proteins and its applications to NMR structure refinement and validation. J. Am. Chem. Soc. 126, 7281–7292 (2004).

    Article  CAS  Google Scholar 

  49. Ryabov, Y., Suh, J-Y., Grishaev, A., Clore, G. M. & Schwieters, C. D. Using the experimentally determined components of the overall rotational diffusion tensor to restrain molecular shape and size in NMR structure determination of globular proteins and protein–protein complexes. J. Am. Chem. Soc. 131, 9522–9531 (2009).

    Article  CAS  Google Scholar 

  50. Schwieters, C. D. & Clore, G. M. Reweighted atomic densities to represent ensembles of NMR structures. J. Biomol. NMR 23, 221–225 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (CAREER award MCB-0745754 to C.P.J.). C.D.S. was supported by the National Institutes of Health Intramural Research Program of the Center for Information Technology. The GB1 plasmid was kindly provided by A.M. Gronenborn.

Author information

Authors and Affiliations

Authors

Contributions

C.P.J. designed the research. I.S. and P.S.N. prepared the samples. I.S., P.S.N. and J.J.H. recorded and analysed the NMR data. C.D.S. and C.P.J. performed the structure calculations. C.D.S. and C.P.J. wrote the paper.

Corresponding author

Correspondence to Christopher P. Jaroniec.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 371 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, I., Nadaud, P., Helmus, J. et al. Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy. Nature Chem 4, 410–417 (2012). https://doi.org/10.1038/nchem.1299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing