Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence that a ‘dynamic knockout’ in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis

Abstract

The question of whether protein motions play a role in the chemical step of enzymatic catalysis has generated much controversy in recent years. Debate has recently reignited over possible dynamic contributions to catalysis in dihydrofolate reductase, following conflicting conclusions from studies of the N23PP/S148A variant of the Escherichia coli enzyme. By investigating the temperature dependence of kinetic isotope effects, we present evidence that the reduction in the hydride transfer rate constants in this variant is not a direct result of impairment of conformational fluctuations. Instead, the conformational state of the enzyme immediately before hydride transfer, which determines the electrostatic environment of the active site, affects the rate constant for the reaction. Although protein motions are clearly important for binding and release of substrates and products, there appears to be no detectable dynamic coupling of protein motions to the hydride transfer step itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures of wild-type EcDHFR and EcDHFR-N23PP/S148A.
Figure 2: Pre-steady-state kinetics of EcDHFR and EcDHFR-N23PP/S148A.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Nagel, Z. D. & Klinman, J. P. A 21st century revisionist's view at a turning point in enzymology. Nature Chem. Biol. 5, 543–550 (2009).

    Article  CAS  Google Scholar 

  2. Limbach, H-H., Schowen, K. B. & Schowen, R. L. Heavy atom motions and tunneling in hydrogen transfer reactions: the importance of the pre-tunneling state. J. Phys. Org. Chem. 23, 586–605 (2010).

    Article  CAS  Google Scholar 

  3. Allemann, R. K., Evans, R. M. & Loveridge, E. J. Probing coupled motions in enzymatic hydrogen tunnelling reactions. Biochem. Soc. Trans. 37, 349–353 (2009).

    Article  CAS  Google Scholar 

  4. Masgrau, L. et al. Atomic description of an enzyme reaction dominated by proton tunneling. Science 312, 237–241 (2006).

    Article  CAS  Google Scholar 

  5. Antoniou, D., Basner, J., Núñez, S. & Schwartz, S. D. Computational and theoretical methods to explore the relation between enzyme dynamics and catalysis. Chem. Rev. 106, 3170–3187 (2006).

    Article  CAS  Google Scholar 

  6. Olsson, M. H. M., Parson, W. W. & Warshel, A. Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. Chem. Rev. 106, 1737–1756 (2006).

    Article  CAS  Google Scholar 

  7. McGeagh, J. D., Ranaghan, K. E. & Mulholland, A. J. Protein dynamics and enzyme catalysis: insights from simulations. Biochim. Biophys. Acta 1814, 1077–1092 (2011).

    Article  CAS  Google Scholar 

  8. Kuznetsov, A. & Ulstrup, J. Proton and hydrogen atom tunnelling in hydrolytic and redox enzyme catalysis. Can. J. Chem. 77, 1085–1096 (1999).

    CAS  Google Scholar 

  9. Sutcliffe, M. J. & Scrutton, N. S. Enzymology takes a quantum leap forward. Phil. Trans. R. Soc. Lond. A 358, 367–386 (2000).

    Article  CAS  Google Scholar 

  10. Pudney, C. R. et al. Evidence to support the hypothesis that promoting vibrations enhance the rate of an enzyme catalyzed H-tunneling reaction. J. Am. Chem. Soc. 131, 17072–17073 (2009).

    Article  CAS  Google Scholar 

  11. Schwartz, S. D. & Schramm, V. L. Enzymatic transition states and dynamic motion in barrier crossing. Nature Chem. Biol. 5, 551–558 (2009).

    Article  CAS  Google Scholar 

  12. Pineda, J. R. E. T., Antoniou, D. & Schwartz, S. D. Slow conformational motions that favor sub-picosecond motions important for catalysis. J. Phys. Chem. B 114, 15985–15990 (2010).

    Article  CAS  Google Scholar 

  13. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article  CAS  Google Scholar 

  14. Doll, K. M. & Finke, R. G. A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: the beta-neopentylcobalamin system combined with prior adocobalamin data. Inorg. Chem. 42, 4849–4856 (2003).

    Article  CAS  Google Scholar 

  15. Doll, K. M., Bender, B. R. & Finke, R. G. The first experimental test of the hypothesis that enzymes have evolved to enhance hydrogen tunneling. J. Am. Chem. Soc. 125, 10877–10884 (2003).

    Article  CAS  Google Scholar 

  16. Kamerlin, S. C. L. & Warshel, A. An analysis of all the relevant facts and arguments indicates that enzyme catalysis does not involve large contributions from nuclear tunneling. J. Phys. Org. Chem. 23, 677–684 (2010).

    Article  CAS  Google Scholar 

  17. Pisliakov, A. V., Cao, J., Kamerlin, S. C. L. & Warshel, A. Enzyme millisecond conformational dynamics do not catalyze the chemical step. Proc. Natl Acad. Sci. USA 106, 17359–17364 (2009).

    Article  CAS  Google Scholar 

  18. Romesberg, F. E. & Schowen, R. L. Isotope effects and quantum tunneling in enzyme-catalyzed hydrogen transfer. Part I. The experimental basis. Adv. Phys. Org. Chem. 39, 27–77 (2004).

    CAS  Google Scholar 

  19. Liu, H. & Warshel, A. Origin of the temperature dependence of isotope effects in enzymatic reactions: the case of dihydrofolate reductase. J. Phys. Chem. B 111, 7852–7861 (2007).

    Article  CAS  Google Scholar 

  20. Wu, Y. D. & Houk, K. Theoretical transition structures for hydride transfer to methyleneiminium ion from methylamine and dihydropyridine. On the nonlinearity of hydride transfers. J. Am. Chem. Soc. 109, 2226–2227 (1987).

    Article  CAS  Google Scholar 

  21. Loveridge, E. J. & Allemann, R. K. Effect of pH on hydride transfer by Escherichia coli dihydrofolate reductase. ChemBioChem 12, 1258–1262 (2011).

    Article  CAS  Google Scholar 

  22. Sikorski, R. S. et al. Tunneling and coupled motion in the Escherichia coli dihydrofolate reductase catalysis. J. Am. Chem. Soc. 126, 4778–4779 (2004).

    Article  CAS  Google Scholar 

  23. Kohen, A., Cannio, R., Bartolucci, S. & Klinman, J. P. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature 399, 496–499 (1999).

    Article  CAS  Google Scholar 

  24. Chowdhury, S. & Banerjee, R. Evidence for quantum mechanical tunneling in the coupled cobalt–carbon bond homolysis-substrate radical generation reaction catalyzed by methylmalonyl-CoA mutase. J. Am. Chem. Soc. 122, 5417–5418 (2000).

    Article  CAS  Google Scholar 

  25. Fan, F. & Gadda, G. Oxygen-and temperature-dependent kinetic isotope effects in choline oxidase: correlating reversible hydride transfer with environmentally enhanced tunneling. J. Am. Chem. Soc. 127, 17954–17961 (2005).

    Article  CAS  Google Scholar 

  26. Anandarajah, K. & Schowen, K. Hydrogen tunneling in glucose oxidation by the archaeon Thermoplasma acidophilum. Z. Phys. Chem. 222, 1333–1347 (2008).

    Article  CAS  Google Scholar 

  27. Hay, S., Pudney, C. R. & Scrutton, N. S. Structural and mechanistic aspects of flavoproteins: probes of hydrogen tunnelling. FEBS J. 276, 3930–3941 (2009).

    Article  CAS  Google Scholar 

  28. Heyes, D. J., Sakuma, M., de Visser, S. P. & Scrutton, N. S. Nuclear quantum tunneling in the light-activated enzyme protochlorophyllide oxidoreductase. J. Biol. Chem. 284, 3762–3767 (2009).

    Article  CAS  Google Scholar 

  29. Sawaya, M. R. & Kraut, J. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36, 586–603 (1997).

    Article  CAS  Google Scholar 

  30. Bhabha, G. et al. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332, 234–238 (2011).

    Article  CAS  Google Scholar 

  31. Adamczyk, A. J., Cao, J., Kamerlin, S. C. L. & Warshel, A. Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions. Proc. Natl Acad. Sci. USA 108, 14115–14120 (2011).

    Article  CAS  Google Scholar 

  32. Swanwick, R. S., Shrimpton, P. J. & Allemann, R. K. Pivotal role of Gly 121 in dihydrofolate reductase from Escherichia coli: the altered structure of a mutant enzyme may form the basis of its diminished catalytic performance. Biochemistry 43, 4119–4127 (2004).

    Article  CAS  Google Scholar 

  33. Fierke, C. A., Johnson, K. A. & Benkovic, S. J. Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli. Biochemistry 26, 4085–4092 (1987).

    Article  CAS  Google Scholar 

  34. Maglia, G., Javed, M. H. & Allemann, R. K. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima. Biochem. J. 374, 529–535 (2003).

    Article  CAS  Google Scholar 

  35. Loveridge, E. J. et al. The role of large-scale motions in catalysis by dihydrofolate reductase. J. Am. Chem. Soc. 133, 20561–20570 (2011).

    Article  CAS  Google Scholar 

  36. Arora, K. & Brooks, C. L. III Functionally important conformations of the Met20 loop in dihydrofolate reductase are populated by rapid thermal fluctuations. J. Am. Chem. Soc. 131, 5642–5647 (2009).

    Article  CAS  Google Scholar 

  37. Osborne, M. J., Schnell, J., Benkovic, S. J., Dyson, H. J. & Wright, P. E. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. Biochemistry 40, 9846–9859 (2001).

    Article  CAS  Google Scholar 

  38. Loveridge, E. J. & Allemann, R. K. The temperature dependence of the kinetic isotope effects of dihydrofolate reductase from Thermotoga maritima is influenced by intersubunit interactions. Biochemistry 49, 5390–5396 (2010).

    Article  CAS  Google Scholar 

  39. Loveridge, E. J., Tey, L-H. & Allemann, R. K. Solvent effects on catalysis by Escherichia coli dihydrofolate reductase. J. Am. Chem. Soc. 132, 1137–1143 (2010).

    Article  CAS  Google Scholar 

  40. Loveridge, E. J., Evans, R. M. & Allemann, R. K. Solvent effects on environmentally coupled hydrogen tunnelling during catalysis by dihydrofolate reductase from Thermotoga maritima. Chem. Eur. J. 14, 10782–10788 (2008).

    Article  CAS  Google Scholar 

  41. Liu, H. & Warshel, A. The catalytic effect of dihydrofolate reductase and its mutants is determined by reorganization energies. Biochemistry 46, 6011–6025 (2007).

    Article  Google Scholar 

  42. Swanwick, R. S., Maglia, G., Tey, L-H. & Allemann, R. K. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase. Biochem. J. 394, 259–265 (2006).

    Article  CAS  Google Scholar 

  43. Blakley, R. Crystalline dihydropteroylglutamic acid. Nature 188, 231–232 (1960).

    Article  CAS  Google Scholar 

  44. Stone, S. R. & Morrison, J. F. Kinetic mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli. Biochemistry 21, 3757–3765 (1982).

    Article  CAS  Google Scholar 

  45. Reijenga, J. C., Gagliardi, L. G. & Kenndler, E. Temperature dependence of acidity constants, a tool to affect separation selectivity in capillary electrophoresis. J. Chromatogr. A 1155, 142–145 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Biotechnology and Biological Sciences Research Council (BBSRC) (grant no. BB/E008380/1) and by Cardiff University.

Author information

Authors and Affiliations

Authors

Contributions

E.J.L. performed the bulk of the experimental work. E.M.B. and J.G. performed additional experiments. E.J.L. and R.K.A. designed the experiments, analysed the data and wrote the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Rudolf K. Allemann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loveridge, E., Behiry, E., Guo, J. et al. Evidence that a ‘dynamic knockout’ in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis. Nature Chem 4, 292–297 (2012). https://doi.org/10.1038/nchem.1296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1296

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing