Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes

Subjects

Abstract

Elucidation of natural product biosynthetic pathways provides important insights into the assembly of potent bioactive molecules, and expands access to unique enzymes able to selectively modify complex substrates. Here, we show full reconstitution, in vitro, of an unusual multi-step oxidative cascade for post-assembly-line tailoring of tirandamycin antibiotics. This pathway involves a remarkably versatile and iterative cytochrome P450 monooxygenase (TamI) and a flavin adenine dinucleotide-dependent oxidase (TamL), which act co-dependently through the repeated exchange of substrates. TamI hydroxylates tirandamycin C (TirC) to generate tirandamycin E (TirE), a previously unidentified tirandamycin intermediate. TirE is subsequently oxidized by TamL, giving rise to the ketone of tirandamycin D (TirD), after which a unique exchange back to TamI enables successive epoxidation and hydroxylation to afford, respectively, the final products tirandamycin A (TirA) and tirandamycin B (TirB). Ligand-free, substrate- and product-bound crystal structures of bicovalently flavinylated TamL oxidase reveal a likely mechanism for the C10 oxidation of TirE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tetramic acid natural products bearing a bicyclic ketal moiety (red) with varying degrees of oxidative modification.
Figure 2: Spectral analysis of tirandamycin tailoring enzymes.
Figure 3: Elucidation of individual steps in the tirandamycin oxidative cascade.
Figure 4: Ligand-free and substrate/product-bound TamL.

Similar content being viewed by others

References

  1. Carlson, J. C., Li, S., Burr, D. A. & Sherman, D. H. Isolation and characterization of tirandamycins from a marine-derived Streptomyces sp. J. Nat. Prod. 72, 2076–2079 (2009).

    Article  CAS  Google Scholar 

  2. Royles, B. J. L. Naturally occurring tetramic acids — structure, isolation, and synthesis. Chem. Rev. 95, 1981–2001 (1995).

    Article  CAS  Google Scholar 

  3. Carlson, J. C. et al. Identification of the tirandamycin biosynthetic gene cluster from Streptomyces sp. 307-9. ChemBioChem 11, 564–572 (2010).

    Article  CAS  Google Scholar 

  4. Omura, T. & Sato, R. The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. J. Biol. Chem. 239, 2379–2385 (1964).

    CAS  PubMed  Google Scholar 

  5. Li, S., Podust, L. M. & Sherman, D. H. In vitro characterization of a self-sufficient biosynthetic cytochrome P450 PikC fused to a heterologous reductase domain RhFRED. J. Am. Chem. Soc. 129, 12940–12941 (2007).

    Article  CAS  Google Scholar 

  6. Dickens, M. L., Priestley, N. D. & Strohl, W. R. In vivo and in vitro bioconversion of epsilon-rhodomycinone glycoside to doxorubicin: functions of DauP, DauK, and DoxA. J. Bacteriol. 179, 2641–2650 (1997).

    Article  CAS  Google Scholar 

  7. Ro, D. K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  Google Scholar 

  8. Kutchan, T. M. & Dittrich, H. Characterization and mechanism of the berberine bridge enzyme, a covalently flavinylated oxidase of benzophenanthridine alkaloid biosynthesis in plants. J. Biol. Chem. 270, 24475–24481 (1995).

    Article  CAS  Google Scholar 

  9. Winkler, A. et al. A concerted mechanism for berberine bridge enzyme. Nat. Chem. Biol. 4, 739–741 (2008).

    Article  CAS  Google Scholar 

  10. Huang, C. H. et al. Crystal structure of glucooligosaccharide oxidase from Acremonium strictum: a novel flavinylation of 6-S-cysteinyl, 8alpha-N1-histidyl FAD. J. Biol. Chem. 280, 38831–38838 (2005).

    Article  CAS  Google Scholar 

  11. Alexeev, I., Sultana, A., Mantsala, P., Niemi, J. & Schneider, G. Aclacinomycin oxidoreductase (AknOx) from the biosynthetic pathway of the antibiotic aclacinomycin is an unusual flavoenzyme with a dual active site. Proc. Natl Acad. Sci. USA 104, 6170–6175 (2007).

    Article  CAS  Google Scholar 

  12. Sosio, M., Stinchi, S., Beltrametti, F., Lazzarini, A. & Donadio, S. The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species. Chem. Biol. 10, 541–549 (2003).

    Article  CAS  Google Scholar 

  13. Rand, T., Qvist, K. B., Walter, C. P. & Poulsen, C. H. Characterization of the flavin association in hexose oxidase from Chondrus crispus. FEBS J. 273, 2693–2703 (2006).

    Article  CAS  Google Scholar 

  14. Winkler, A. et al. Structural and mechanistic studies reveal the functional role of bicovalent flavinylation in berberine bridge enzyme. J. Biol. Chem. 284, 19993–20001 (2009).

    Article  CAS  Google Scholar 

  15. Winkler, A. et al. Berberine bridge enzyme catalyzes the six electron oxidation of (S)-reticuline to dehydroscoulerine. Phytochemistry 70, 1092–1097 (2009).

    Article  CAS  Google Scholar 

  16. Mathews, F. S., Chen, Z. W., Bellamy, H. D. & McIntire, W. S. Three-dimensional structure of p-cresol methylhydroxylase (flavocytochrome c) from Pseudomonas putida at 3.0-Å resolution. Biochemistry 30, 238–247 (1991).

    Article  CAS  Google Scholar 

  17. Carter, C. J. & Thornburg, R. W. Tobacco nectarin V is a flavin-containing berberine bridge enzyme-like protein with glucose oxidase activity. Plant Physiol. 134, 460–469 (2004).

    Article  CAS  Google Scholar 

  18. Willie, A., Edmondson, D. E. & Jorns, M. S. Sarcosine oxidase contains a novel covalently bound FMN. Biochemistry 35, 5292–5299 (1996).

    Article  CAS  Google Scholar 

  19. Fitzpatrick, P. F. Carbanion versus hydride transfer mechanisms in flavoprotein-catalyzed dehydrogenations. Bioorg. Chem. 32, 125–139 (2004).

    Article  CAS  Google Scholar 

  20. Fraaije, M. W. & Mattevi, A. Flavoenzymes: diverse catalysts with recurrent features. Trends Biochem. Sci. 25, 126–132 (2000).

    Article  CAS  Google Scholar 

  21. Liu, Y. C. et al. Interception of teicoplanin oxidation intermediates yields new antimicrobial scaffolds. Nat. Chem. Biol. 7, 304–309 (2011).

    Article  CAS  Google Scholar 

  22. Ghisla, S. & Massey, V. Mechanisms of flavoprotein-catalyzed reactions. Eur. J. Biochem. 181, 1–17 (1989).

    Article  CAS  Google Scholar 

  23. Zhang, Z. et al. Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase. Nat. Struct. Biol. 7, 127–133 (2000).

    Article  CAS  Google Scholar 

  24. Salowe, S. P., Marsh, E. N. & Townsend, C. A. Purification and characterization of clavaminate synthase from Streptomyces clavuligerus: an unusual oxidative enzyme in natural product biosynthesis. Biochemistry 29, 6499–6508 (1990).

    Article  CAS  Google Scholar 

  25. Sherman, D. H. et al. The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae. J. Biol. Chem. 281, 26289–26297 (2006).

    Article  CAS  Google Scholar 

  26. Tokai, T. et al. Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis. Biochem. Biophys. Res. Commun. 353, 412–417 (2007).

    Article  CAS  Google Scholar 

  27. Anzai, Y. et al. Functional analysis of MycCI and MycG, cytochrome P450 enzymes involved in biosynthesis of mycinamicin macrolide antibiotics. Chem. Biol. 15, 950–959 (2008).

    Article  CAS  Google Scholar 

  28. Huang, C. H. et al. Functional roles of the 6-S-cysteinyl, 8alpha-N1-histidyl FAD in glucooligosaccharide oxidase from Acremonium strictum. J. Biol. Chem. 283, 30990–30996 (2008).

    Article  CAS  Google Scholar 

  29. Winkler, A., Kutchan, T. M. & Macheroux, P. 6-S-cysteinylation of bi-covalently attached FAD in berberine bridge enzyme tunes the redox potential for optimal activity. J. Biol. Chem. 282, 24437–24443 (2007).

    Article  CAS  Google Scholar 

  30. Holton, J. & Alber, T. Automated protein crystal structure determination using ELVES. Proc. Natl Acad. Sci. USA 101, 1537–1542 (2004).

    Article  CAS  Google Scholar 

  31. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

Download references

Acknowledgements

The authors thank P. G. Cruz for assistance with NMR structure elucidation, P. M. Kells for excellent technical assistance, and staff members of Beamline 8.3.1, J. Holton, G. Meigs and J. Tanamachi at the Advanced Light Source at Lawrence Berkeley National Laboratory, for assistance with data collection. This work was funded by the National Institutes of Health (grant GM078553 to D.H.S. and L.M.P.), International Cooperative Biodiversity Group (U01 TW007404) and the Hans W. Vahlteich Professorship (to D.H.S.). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02-05CH11231).

Author information

Authors and Affiliations

Authors

Contributions

All authors designed experiments and analysed data. J.C., S.L., S.G., Y.A. and D.B. performed the experiments. J.C., S.L., L.P. and D.S. wrote the manuscript. J.C. and S.L. contributed equally to this study.

Corresponding author

Correspondence to David H. Sherman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1655 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, J., Li, S., Gunatilleke, S. et al. Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes. Nature Chem 3, 628–633 (2011). https://doi.org/10.1038/nchem.1087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1087

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing