Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular heterometallic hydride clusters composed of rare-earth and d-transition metals

Abstract

Heteromultimetallic hydride clusters containing both rare-earth and d-transition metals are of interest in terms of both their structure and reactivity. However, such heterometallic complexes have not yet been investigated to a great extent because of difficulties in their synthesis and structural characterization. Here, we report the synthesis, X-ray and neutron diffraction studies, and hydrogen addition and release properties of a family of rare-earth/d-transition-metal heteromultimetallic polyhydride complexes of the core structure type ‘Ln4MHn’ (Ln = Y, Dy, Ho; M = Mo, W; n = 9, 11, 13). Monitoring of hydrogen addition to a hydride cluster such as [{(C5Me4SiMe3)Y}4(μ-H)9Mo(C5Me5)] in a single-crystal to single-crystal process by X-ray diffraction has been achieved for the first time. Density functional theory studies reveal that the hydrogen addition process is cooperatively assisted by the Y/Mo heteromultimetallic sites, thus offering unprecedented insight into the hydrogen addition and release process of a metal hydride cluster.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and transformations of the Y4M (M = Mo, W) heteropentametallic polyhydrides (Cp* = C5Me5, Cp′ = C5Me4SiMe3).
Figure 2: X-ray and neutron structures of the heterometallic polyhydrides with 30% thermal ellipsoids.
Figure 3: X-ray monitoring of hydrogenation of 5 to give 3a in a single-crystal to single-crystal process.
Figure 4: DFT-calculated energy profile for hydrogenation of 5m (a model of 5).

Similar content being viewed by others

References

  1. Adams, R. A. & Cotton, F. A. Catalysis by Di- and Polynuclear Metal Cluster Complexes (Wiley-VCH, 1998).

  2. Doherty, S. Organometallic chemistry of bi- and poly-nuclear complexes. Annu. Rep. Prog. Chem. A 93, 395–432 (1996).

    Article  Google Scholar 

  3. Suzuki, H. Activation of organic substrates on multi-metallic sites of transition metal polyhydride clusters having C5Me5 groups as auxiliary ligands. Eur. J. Inorg. Chem. 1009–1023 (2002).

    Article  Google Scholar 

  4. Ohanessian, G. & Goddard, W. A. III. Valence-bond concepts in transition metals: metal hydride diatomic cations. Acc. Chem. Res. 23, 386–392 (1990).

    Article  CAS  Google Scholar 

  5. Ephritikhine, M. Synthesis, structure, and reactions of hydride, borohydride, and aluminohydride compounds of the f-elements. Chem. Rev. 97, 2193–2242 (1997).

    Article  CAS  Google Scholar 

  6. Hou, Z., Nishiura, M. & Shima, T. Synthesis and reactions of polynuclear polyhydrido rare earth metal complexes containing ‘(C5Me4SiMe3)LnH2’ units: a new frontier in rare earth metal hydride chemistry. Eur. J. Inorg. Chem. 2535–2545 (2007).

  7. Kubas, G. J. Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem. Rev. 107, 4152–4205 (2007).

    Article  CAS  Google Scholar 

  8. Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    Article  CAS  Google Scholar 

  9. Takimoto, M. & Hou, Z. Hydrogen at the flick of a switch. Nature 443, 400–401 (2006).

    Article  CAS  Google Scholar 

  10. Schüth, F., Bogdanović, B. & Felderhoff, M. Light metal hydrides and complex hydrides for hydrogen storage. Chem. Commun. 2249–2258 (2004).

  11. Evans, W. J., Meadows, J. H. & Hanusa, T. P. Organolanthanide and organoyttrium hydride chemistry. 6. Direct synthesis and 1H NMR spectral analysis of the trimetallic yttrium and yttrium–zirconium tetrahydride complexes, {[(C5H5)2YH]3H}{Li(THF)4} and {[(CH3C5H4)2YH]2[(CH3C5H4)2ZrH]H}. J. Am. Chem. Soc. 106, 4454–4460 (1984).

    Article  CAS  Google Scholar 

  12. Alvarez, D. Jr, Caulton, K. G., Evans, W. J. & Ziller, J. W. Synthesis, structure, and reactivity of heterometallic polyhydride complexes of rhenium with yttrium and lutetium. Inorg. Chem. 31, 5500–5508 (1992).

    Article  CAS  Google Scholar 

  13. Alvarez, D., Caulton, K. G., Evans, W. J. & Ziller, J. W. Reversible opening and closing of hetero trimetallic units in (C5H5)2Y(THF)Re2H7(PMe2Ph)4 and (C5H5)2LuRe2H7(PMe2Ph)4 . J. Am. Chem. Soc. 112, 5674–5676 (1990).

    Article  CAS  Google Scholar 

  14. Butovskii, M. V., Tok, O. L., Wagner, F. R. & Kempe, R. Bismetallocenes: lanthanoid–transition-metal bonds through alkane elimination. Angew. Chem. Int. Ed. 47, 6469–6472 (2008).

    Article  CAS  Google Scholar 

  15. Shima, T. & Hou, Z. Rare earth/d-transition metal heteomultimetallic polyhydride complexes based on half-sandwich rare earth moieties. Organometallics 28, 2244–2252 (2009).

    Article  CAS  Google Scholar 

  16. Shima, T. & Hou, Z. Activation and dehydrogenative silylation of the C–H bonds of phosphine-coordinated ruthenium in Lu/Ru heteromultimetallic hydride complexes. Chem. Lett. 37, 298–299 (2008).

    Article  CAS  Google Scholar 

  17. Radu, N. S., Gantzel, P. K. & Tilley, T. D. Lanthanide–tungsten heterobimetallic complexes via σ-bond metathesis. J. Chem. Soc. Chem. Commun. 1175–1176 (1994).

  18. Green, M. L. H., Hughes, A. K., Michaelidou, D. M. & Mountford, P. New lanthanide–hydrogen–transition metal compounds: [{(PMe3)3WH5}2Yb·L3] and [{(η-C5H5)2NbH2}2Yb·L3] where L3 = (MeOCH2CH2)2O. J. Chem. Soc. Chem. Commun. 591–593 (1993).

  19. Cheng, J., Saliu, K., Ferguson, M. J., McDonald, R. & Takats, J. Variable nuclearity scorpionate-supported lanthanide polyhydrides: [(TpR,R')LnH2]n (n = 3, 4 and 6). J. Organometall. Chem. 695, 2696–2702 (2010).

    Article  CAS  Google Scholar 

  20. Cheng, J., Ferguson, M. J. & Takats, J. Synthesis and reaction of [(TpiPr2)LnH2]3 (Ln = Y, Lu) with CO: trinuclear cluster-bound propenolate en route to selective formation of propene. J. Am. Chem. Soc. 132, 2–3 (2010).

    Article  CAS  Google Scholar 

  21. Cheng, J. et al. Scorpionate-supported dialkyl and dihydride lanthanide complexes: ligand- and solvent-dependent cluster hydride formation. Angew. Chem. Int. Ed. 47, 4910–4913 (2008).

    Article  CAS  Google Scholar 

  22. Ohashi, M. et al. Rare-earth metal alkyl and hydride complexes stabilized by a cyclen-derived [NNNN] macrocyclic ancillary ligand. J. Am. Chem. Soc. 130, 6920–6921 (2008).

    Article  CAS  Google Scholar 

  23. Hultzsch, K. C., Voth, P., Spaniol, T. P. & Okuda, J. Synthesis and characterization of a tetranuclear hydride cluster of yttrium [{(η5-C5Me4SiMe3)Y}4(μ-H)4(μ3-H)4(THF)2]. Z. Anorg. Allg. Chem. 629, 1272–1276 (2003).

    Article  CAS  Google Scholar 

  24. Lyubov, D. M., Döring, C., Ketkov, S. Y., Kempe, R. & Trifonov, A. A. Selective protonation of the Y–C bond in trinuclear yttrium alkyl–hydrido clusters and formation of the cationic polyhydrido core. Chem. Eur. J. 17, 3824–3826 (2011).

    Article  CAS  Google Scholar 

  25. Lyubov, D. M. et al. Selective assembly of trinuclear rare-earth alkyl hydrido clusters supported by aminopyridinate ligands. Organometallics 27, 2905–2907 (2008).

    Article  CAS  Google Scholar 

  26. Nishiura, M. & Hou, Z. Novel polymerization catalysts and hydride clusters from rare-earth metal dialkyls. Nature Chem. 2, 257–268 (2010).

    Article  CAS  Google Scholar 

  27. Nishiura, M., Baldamus, J., Shima, T., Mori, K. & Hou, Z. Synthesis and structures of the C5Me4SiMe3-supported polyhydride complexes over the full size-range of the rare earth series. Chem. Eur. J. 17, 5033–5044 (2011).

    Article  CAS  Google Scholar 

  28. Cheng, J., Shima, T. & Hou, Z. Rare-earth polyhydride complexes bearing bis(phosphinophenyl)amido pincer ligands. Angew. Chem. Int. Ed. 50, 1857–1860 (2011).

    Article  CAS  Google Scholar 

  29. Shima, T. & Hou, Z. Selective ammonolysis of half-sandwich rare earth metal dialkyl and polyhydride complexes: synthesis of polyamido rare earth complexes having novel structures. Dalton Trans. 39, 6858–6863 (2010).

    Article  CAS  Google Scholar 

  30. Takenaka, Y., Shima, T., Baldamus, J. & Hou, Z. Reduction of transition-metal-coordinated carbon monoxide by a rare-earth hydride cluster: isolation of well-defined heteromultimetallic oxycarbene, oxymethyl, carbene and methyl complexes. Angew. Chem. Int. Ed. 48, 7888–7891 (2009).

    Article  CAS  Google Scholar 

  31. Yousufuddin, M. et al. Neutron diffraction studies on 4-coordinate hydrogen atom in an yttrium cluster. J. Am. Chem. Soc. 130, 3888–3891 (2008).

    Article  CAS  Google Scholar 

  32. Li, X., Baldamus, J., Nishiura, M. & Hou, Z. Cationic rare-earth polyhydrido complexes: synthesis, structure, and catalytic activity for the cis-1,4-selective polymerization of 1,3-cyclohexadiene. Angew. Chem. Int. Ed. 45, 8184–8188 (2006).

    Article  CAS  Google Scholar 

  33. Shima, T. & Hou, Z. Hydrogenation of carbon monoxide by tetranuclear rare earth metal polyhydrido complexes. Selective formation of ethylene and isolation of well-defined polyoxo rare earth metal clusters. J. Am. Chem. Soc. 128, 8124–8125 (2006).

    Article  CAS  Google Scholar 

  34. Cui, D., Nishiura, M. & Hou, Z. Alternating copolymerization of cyclohexene oxide and carbon dioxide catalyzed by organo rare earth metal complexes. Macromolecules 38, 4089–4095 (2005).

    Article  CAS  Google Scholar 

  35. Luo, Y., Baldamus, J., Tardif, O. & Hou, Z. DFT study of the tetranuclear lutetium and yttrium polyhydride cluster complexes [(C5Me4SiMe3)4Ln4H8] (Ln = Lu, Y) that contain a four-coordinate hydrogen atom. Organometallics 24, 4362–4366 (2005).

    Article  CAS  Google Scholar 

  36. Cui, D., Nishiura, M. & Hou, Z. Lanthanide–imido complexes and their reactions with benzonitrile. Angew. Chem. Int. Ed. 44, 959–962 (2005).

    Article  CAS  Google Scholar 

  37. Tardif, O., Hashizume, D. & Hou, Z. Hydrogenation of carbon dioxide and aryl isocyanates by a tetranuclear tetrahydrido yttrium complex. Isolation, structures, and CO2 insertion reactions of methylene diolate and μ3-oxo yttrium complexes. J. Am. Chem. Soc. 126, 8080–8081 (2004).

    Article  CAS  Google Scholar 

  38. Cui, D., Tardif, O. & Hou, Z. Tetranuclear rare earth metal polyhydrido complexes composed of ‘(C5Me4SiMe3)LnH2’ units. Unique reactivities toward unsaturated C–C, C–N, and C–O bonds. J. Am. Chem. Soc. 126, 1312–1313 (2004).

    Article  CAS  Google Scholar 

  39. Tardif, O., Nishiura, M. & Hou, Z. Isolation and structural characterization of a polyhydrido lanthanide cluster complex consisting of ‘(C5Me4SiMe3)LuH2’ units. Organometallics 22, 1171–1173 (2003).

    Article  CAS  Google Scholar 

  40. Stewart, T. et al. The space between: neutron diffraction studies reveal multiple hydrogen atom coordination numbers in an anionic dysprosium hydride cluster. Inorg. Chim. Acta. 363, 562–566 (2010).

    Article  CAS  Google Scholar 

  41. Shin, J. H. & Parkin, G. The syntheses, structures and reactivity of some mononuclear and dinuclear pentamethylcyclopentadienyl molybdenum complexes. Polyhedron 13, 1489–1493 (1994).

    Article  CAS  Google Scholar 

  42. Bau, R. et al. Five-coordinated hydrogen: neutron diffraction analysis of the hydrido cluster complex [H2Rh13(CO)24]3–. Science 275, 1099–1102 (1997).

    Article  CAS  Google Scholar 

  43. Collman, J. P., Hegedus, L. S., Norton, J. R. & Finke, R. G. Principles and Applications of Organotransition Metal Chemistry 279–353 (University Science Books, 1987).

  44. Kawamichi, T., Haneda, T., Kawano, M. & Fujita, M. X-ray observation of a transient hemiaminal trapped in a porous network. Nature 461, 633–635 (2009).

    Article  CAS  Google Scholar 

  45. Supriya, S. & Das, S. K. Reversible single crystal to single crystal transformation through Fe–O(H)Me/Fe–OH2 bond formation/bond breaking in a gas–solid reaction at an ambient condition. J. Am. Chem. Soc. 129, 3464–3465 (2007).

    Article  CAS  Google Scholar 

  46. Kobatake, S., Takami, S., Muto, H., Ishikawa, T. & Irie, M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446, 778–781 (2007).

    Article  CAS  Google Scholar 

  47. Zhang, J.-P., Lin, Y.-Y., Zhang, W.-X., & Chen, X.-M. Temperature- or guest-induced drastic single-crystal-to-single-crystal transformations of a nanoporous coordination polymer. J. Am. Chem. Soc. 127, 14162–14163 (2005).

    Article  CAS  Google Scholar 

  48. Albrecht, M., Lutz, M., Spek, A. L. & van Koten, G. Organoplatinum crystals for gas-triggered switches. Nature 406, 970–974 (2000).

    Article  CAS  Google Scholar 

  49. Tokitoh, N. et al. A unique crystalline-state reaction of an overcrowded distibene with molecular oxygen: the first example of a single crystal to a single crystal reaction with an external reagent. J. Am. Chem. Soc. 120, 433–434 (1998).

    Article  CAS  Google Scholar 

  50. Ohashi, Y. & Sasada, Y. X-ray analysis of Co–C bond cleavage in the crystalline state. Nature 267, 142–144 (1977).

    Article  CAS  Google Scholar 

  51. Huang, Z., White, P. S. & Brookhart, M. Ligand exchanges and selective catalytic hydrogenation in molecular single crystals. Nature 465, 598–601 (2010).

    Article  CAS  Google Scholar 

  52. Ohno, K. & Maeda, S. A scaled hypersphere search method for the topography of reaction pathways on the potential energy surface. Chem. Phys. Lett. 384, 277–282 (2004).

    Article  CAS  Google Scholar 

  53. Momma, K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst. 41, 653–658 (2008).

    Article  CAS  Google Scholar 

  54. Kirtley, S. W., Olsen, J. P. & Bau, R. Location of the hydrogen atoms in H3Mn3(CO)12. A crystal structure determination. J. Am. Chem. Soc. 95, 4532–4536 (1973).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of Professor Robert Bau (1944–2008). We are grateful to K. Aznavour for her assistance in initial neutron diffraction studies, to the Institut Laue-Langevin for the allocations of beam time on D19 and VIVALDI for the neutron studies quoted here of 2b and 3b , respectively, and to D. Hashizume for help with analysis of the neutron data of 3b . This work was supported by a Grant-in-Aid for Young Scientists (B) (no. 21750068), a Grant-in-Aid for Scientific Research (S) (no. 21225004) from JSPS, National Natural Science Foundation of China (no. 21028001), RICC (RIKEN Integrated Cluster of Clusters), and the Network and Information Centre of Dalian University of Technology for computational resources. Z.H. is grateful to the Chang Jiang Scholar Program for Visiting Professor.

Author information

Authors and Affiliations

Authors

Contributions

T. Shima carried out all syntheses, NMR and X-ray characterizations, and reactivity studies. Y.L. carried out DFT calculations. T. Stewart, R.B., G.J.M. and S.A.M. carried out neutron diffraction studies. Z.H. directed the project. T. Shima and Z.H. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Zhaomin Hou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5015 kb)

Supplementary information

Crystallographic data for compound 2a (CIF 37 kb)

Supplementary information

Crystallographic data data for compound 2b (CIF 39 kb)

Supplementary information

Neutron diffraction for compound 2b (CIF 65 kb)

Supplementary information

Crystallographic data for compound 3a (CIF 36 kb)

Supplementary information

Crystallographic data data for compound 3b (CIF 36 kb)

Supplementary information

Neutron diffraction for compound 3b (CIF 54 kb)

Supplementary information

Crystallographic data for compound 4 (CIF 35 kb)

Supplementary information

Crystallographic data for compound 5 (CIF 37 kb)

Supplementary information

Crystallographic data for compound 3a_Dy (CIF 37 kb)

Supplementary information

Crystallographic data for compound 5_Dy (CIF 37 kb)

Supplementary information

Crystallographic data for compound 3a_Ho (CIF 43 kb)

Supplementary information

Crystallographic data for compound 5_Ho (CIF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shima, T., Luo, Y., Stewart, T. et al. Molecular heterometallic hydride clusters composed of rare-earth and d-transition metals. Nature Chem 3, 814–820 (2011). https://doi.org/10.1038/nchem.1147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing