Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

Abstract

We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images of xerogels of 1 and 3 obtained from drying a 1 wt% gel in toluene.
Figure 2: Stress sweep rheology of gelator 1.
Figure 3: CBZ crystals grown in solutions or gels of 1.
Figure 4: Recovery of a single crystal of CBZ form III by acetate-anion-triggered gel dissolution of a 1:9 CHCl3:toluene gel of gelator 3.
Figure 5: Optical microscopy of CBZ (1 wt%) grown in a metallogel medium together with control experiments showing the effect of the gel.
Figure 6: SEM images of CBZ in metallogels of 4 with CuCl2, showing crystals of carbamazepine grown within the metallogel.

Similar content being viewed by others

References

  1. Henisch, H. K. Crystal Growth in Gels (Pennsylvania State University Press, 1976).

    Google Scholar 

  2. Petrova, R. I., Patel, R. & Swift, J. A. Habit modification of asparagine monohydrate crystals by growth in hydrogel media. Cryst. Growth Des. 6, 2709–2715 (2006).

    CAS  Google Scholar 

  3. Daiguebonne, C. et al. Lanthanide-based molecular materials: gel medium induced polymorphism. Cryst. Growth Des. 3, 1015–1020 (2003).

    CAS  Google Scholar 

  4. Desiraju, G. R., Curtin, D. Y. & Paul, I. C. Crystal-growth by non-aqueous gel-diffusion. J. Am. Chem. Soc. 99, 6148 (1977).

    CAS  Google Scholar 

  5. Yaghi, O. M., Li, G. M. & Li, H. L. Crystal growth of extended solids by nonaqueous gel diffusion. Chem. Mater. 9, 1074–1076 (1997).

    CAS  Google Scholar 

  6. Henisch, H. K. & Garciaruiz, J. M. Crystal-growth in gels and Liesegang ring formation. 2. Crystallization criteria and successive precipitation. J. Cryst. Growth 75, 203–211 (1986).

    CAS  Google Scholar 

  7. Petrova, R. I. & Swift, J. A. Selective growth and distribution of crystalline enantiomers in hydrogels. J. Am. Chem. Soc. 126, 1168–1173 (2004).

    CAS  PubMed  Google Scholar 

  8. Li, H., Fujiki, Y., Sada, K. & Estroff, L. A. Gel incorporation inside of organic single crystals grown in agarose hydrogels. CrystEngComm doi:10.1039/c1030ce00118j (2010).

  9. McCauley, J. W. & Roy, R. Controlled nucleation and crystal-growth of various CaCO3 phases by silica-gel technique. Am. Miner. 59, 947–963 (1974).

    CAS  Google Scholar 

  10. Terech, P. & Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3160 (1997).

    CAS  PubMed  Google Scholar 

  11. George, M. & Weiss, R. G. Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc. Chem. Res. 39, 489–497 (2006).

    CAS  PubMed  Google Scholar 

  12. Dastidar, P. Supramolecular gelling agents: can they be designed? Chem. Soc. Rev. 37, 2699–2715 (2008).

    CAS  PubMed  Google Scholar 

  13. Piepenbrock, M.-O. M., Lloyd, G. O., Clarke, N. & Steed, J. W. Metal- and anion-binding supramolecular gels. Chem. Rev. 110, 1960–2004 (2010).

    CAS  PubMed  Google Scholar 

  14. Hirst, A. R., Escuder, B., Miravet, J. F. & Smith, D. K. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew. Chem. Int. Ed. 47, 8002–8018 (2008).

    CAS  Google Scholar 

  15. Maeda, H. Anion-responsive supramolecualr gels. Chem. Eur. J. 36, 11274–11282 (2008).

    Google Scholar 

  16. Sangeetha, N. M. & Maitra, U. Supramolecular gels: functions and uses. Chem. Soc. Rev. 34, 821–836 (2005).

    CAS  PubMed  Google Scholar 

  17. Abdallah, D. J. & Weiss, R. G. Organogels and low molecular mass organic gelators. Adv. Mater. 12, 1237–1247 (2000).

    CAS  Google Scholar 

  18. Estroff, L. A. & Hamilton, A. D. Effective gelation of water using a series of bis-urea dicarboxylic acids. Angew. Chem. Int. Ed. 39, 3447–3450 (2000).

    CAS  Google Scholar 

  19. Estroff, L. A., Addadi, L., Weiner, S. & Hamilton, A. D. An organic hydrogel as a matrix for the growth of calcite crystals. Org. Biomol. Chem. 2, 137–141 (2004).

    CAS  PubMed  Google Scholar 

  20. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    CAS  Google Scholar 

  21. Lloyd, G. O. & Steed, J. W. Anion-tuning of supramolecular gel properties. Nature Chem. 1, 437–442 (2009).

    CAS  Google Scholar 

  22. Stahly, G. P. Diversity in single- and multiple-component crystals. The search for and prevalence of polymorphs and cocrystals. Cryst. Growth Des. 7, 1007–1026 (2007).

    CAS  Google Scholar 

  23. Piepenbrock, M. M., Clarke, N. & Steed, J. W. Metal ion and anion based ‘tuning’ of a supramolecular metallogel. Langmuir 25, 8451–8456 (2009).

    CAS  PubMed  Google Scholar 

  24. Piepenbrock, M.-O. M., Lloyd, G. O., Clarke, N. & Steed, J. W. Gelation is crucially dependent on functional group orientation and may be tuned by anion binding. Chem. Commun. 2644–2646 (2008).

  25. Ton, C. Q. & Bolte, M. 2-Hydroxybenzyl alcohol-phenanthroline (1/1). Acta Crystallogr. Sect. E 65, O2936–U2505 (2009).

  26. Vishweshwar, P., McMahon, J. A., Oliveira, M., Peterson, M. L. & Zaworotko, M. J. The predictably elusive form II of aspirin. J. Am. Chem. Soc. 127, 16802–16803 (2005).

    CAS  PubMed  Google Scholar 

  27. Bond, A. D., Boese, R. & Desiraju, G. R. On the polymorphism of aspirin: crystalline aspirin as intergrowths of two ‘polymorphic’ domains. Angew. Chem. Int. Ed. 46, 618–622 (2007).

    CAS  Google Scholar 

  28. Grzesiak, A. L., Lang, M. D., Kim, K. & Matzger, A. J. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. J. Pharm. Sci. 92, 2260–2271 (2003).

    CAS  PubMed  Google Scholar 

  29. Lang, M. D., Grzesiak, A. L. & Matzger, A. J. The use of polymer heteronuclei for crystalline polymorph selection. J. Am. Chem. Soc. 124, 14834–14835 (2002).

    CAS  PubMed  Google Scholar 

  30. Florence, A. J. et al. Two-dimensional similarity between forms I and II of cytenamide, a carbamazepine analogue. CrystEngComm 10, 811–813 (2008).

    CAS  Google Scholar 

  31. Gelbrich, T. & Hursthouse, M. B. Systematic investigation of the relationships between 25 crystal structures containing the carbamazepine molecule or a close analogue: a case study of the XPac method. CrystEngComm 8, 448–460 (2006).

    CAS  Google Scholar 

  32. Harris, R. K. et al. Structural studies of the polymorphs of carbamazepine, its dihydrate and two solvates. Org. Process Res. Dev. 9, 902–910 (2005).

    CAS  Google Scholar 

  33. Lang, M. D., Kampf, J. W. & Matzger, A. J. Form IV of carbamazepine. J. Pharm. Sci. 91, 1186–1190 (2002).

    CAS  PubMed  Google Scholar 

  34. Rafilovich, M. et al. Groth's original concomitant polymorphs revisited. Cryst. Growth Des. 5, 2197–2209 (2005).

    CAS  Google Scholar 

  35. Fucke, K., Qureshi, N., Yufit, D. S., Howard, J. A. K. & Steed, J. W. Hydrogen bonding is not everything: extensive polymorphism in a system with conserved hydrogen bonded synthons. Cryst. Growth Des. 10, 880–886 (2010).

    CAS  Google Scholar 

  36. Pauchet, M., Morelli, T., Coste, S., Malandain, J. J. & Coquerel, G. Crystallization of (+/−)-modafinil in gel: access to form I, form III and twins. Cryst. Growth Des. 6, 1881–1889 (2006).

    CAS  Google Scholar 

  37. Davey, R. J., Williams-Seton, L., Lieberman, H. F. & Blagden, N. Stabilizing a solid–solid interface with a molecular-scale adhesive. Nature 402, 797–799 (1999).

    CAS  Google Scholar 

  38. Williams-Seton, L., Davey, R. J. & Lieberman, H. F. Solution chemistry and twinning in saccharin crystals: a combined probe for the structure and functionality of the crystal-fluid interface. J. Am. Chem. Soc. 121, 4563–4567 (1999).

    CAS  Google Scholar 

  39. Burnett, D. J., Thielmann, F. & Sokoloski, T. D. Investigating carbamazepine-acetone solvate formation via dynamic gravimetric vapor sorption. J. Therm. Anal. Calorim. 89, 693–698 (2007).

    CAS  Google Scholar 

  40. Fleischman, S. G. et al. Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine. Cryst. Growth Des. 3, 909–919 (2003).

    CAS  Google Scholar 

  41. McMahon, L. E., Timmins, P., Williams, A. C. & York, P. Characterization of dihydrates prepared from carbamazepine polymorphs. J. Pharm. Sci. 85, 1064–1069 (1996).

    CAS  PubMed  Google Scholar 

  42. Kerr, K. A., Richardson, J. F. & Eddy, D. D. 3-Hydroxy benzyl alcohol. ACA Abstr. Papers (Winter) 13, 67 – CSD refcode FACCOB (1985).

  43. Capacci-Daniel, C., Gaskell, K. J. & Swift, J. A. Nucleation and growth of metastable polymorphs on siloxane monolayer templates. Cryst. Growth Des. 10, 952–962 (2010).

    CAS  Google Scholar 

  44. Hiremath, R., Basile, J. A., Varney, S. W. & Swift, J. A. Controlling molecular crystal polymorphism with self-assembled monolayer templates. J. Am. Chem. Soc. 127, 18321–18327 (2005).

    CAS  PubMed  Google Scholar 

  45. Vrecer, F., Vrbinc, M. & Meden, A. Characterization of piroxicam crystal modifications. Int. J. Pharm. 256, 3–15 (2003).

    CAS  PubMed  Google Scholar 

  46. Li, Y., Wang, T. & Liu, M. Ultrasound induced formation of organogel from a glutamic dendron. Tetrahedron 63, 7468–7473 (2007).

    CAS  Google Scholar 

  47. Munoz-Rojas, D., Oro-Sole, J. & Gomez-Romero, P. Spontaneous self-assembly of Cu2O@PPy nanowires and anisotropic crystals. Chem. Commun. 5913–5915 (2009).

  48. Munoz-Rojas, D., Oro-Sole, J. & Gomez-Romero, P. From nanosnakes to nanosheets: a matrix-mediated shape evolution. J. Phys. Chem. C 112, 20312–20318 (2008).

    CAS  Google Scholar 

  49. Munoz-Espi, R., Burger, C., Krishnan, C. V. & Chu, B. Polymer-controlled crystallization of molybdenum oxides from peroxomolybdates: structural diversity and application to catalytic epoxidation. Chem. Mater. 20, 7301–7311 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Engineering and Physical Sciences Research Council, GlaxoSmithKline and the Association of the Commonwealth Universities for funding.

Author information

Authors and Affiliations

Authors

Contributions

J.A.F., M.-O.M.P. and G.O.L. undertook the synthesis of gelators, experimental studies and rheology measurements. N.C. supervised the rheology work, J.A.K.H. supervised the crystallographic work and J.W.S. was responsible for overall project concept, direction and coordination. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Jonathan W. Steed.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, J., Piepenbrock, MO., Lloyd, G. et al. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth. Nature Chem 2, 1037–1043 (2010). https://doi.org/10.1038/nchem.859

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.859

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing