Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

γ-Tubulin complex-mediated anchoring of spindle microtubules to spindle-pole bodies requires Msd1 in fission yeast

Abstract

The anchoring of microtubules to subcellular structures is critical for cell polarity and motility. Although the process of anchoring cytoplasmic microtubules to the centrosome has been studied in some detail1,2,3,4, it is not known how spindle microtubules are anchored to the mitotic centrosome and, particularly, whether anchoring and nucleation of mitotic spindles are functionally separate. Here, we show that a fission yeast coiled-coil protein, Msd1, is required for anchoring the minus end of spindle microtubules to the centrosome equivalent, the spindle-pole body (SPB). msd1 deletion causes spindle microtubules to abnormally extend beyond SPBs, which results in chromosome missegregation. Importantly, this protruding spindle is phenocopied by the amino-terminal deletion mutant of Alp4, a component of the γ-tubulin complex5 (γ-TuC), which lacks the potential Msd1-interacting domain. We propose that Msd1 interacts with γ-TuC, thereby specifically anchoring the minus end of microtubules to SPBs without affecting microtubule nucleation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitosis-specific localization of Msd1.
Figure 2: Protruding mitotic spindle microtubules in the msd1 deletion mutant.
Figure 3: The minus end of spindle microtubules is no longer tethered to the SPB in the msd1 mutant.
Figure 4: Chromosome missegregation in the msd1 mutant.
Figure 5: Interaction between Msd1 and Alp4 and the protruding spindle phenotypes in alp4 mutants.

Similar content being viewed by others

References

  1. Delgehyr, N., Sillibourne, J. & Bornens, M. Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 118, 1565–1575 (2005).

    Article  CAS  Google Scholar 

  2. Quintyne, N. J. et al. Dynactin is required for microtubule anchoring at centrosomes. J. Cell Biol. 147, 321–334 (1999).

    Article  CAS  Google Scholar 

  3. Yan, X., Habedanck, R. & Nigg, E. A. A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol. Biol. Cell 17, 634–644 (2006).

    Article  CAS  Google Scholar 

  4. Dammermann, A. & Merdes, A. Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J. Cell Biol. 159, 255–266 (2002).

    Article  CAS  Google Scholar 

  5. Vardy, L. & Toda, T. The fission yeast γ-tubulin complex is required in G1 phase and is a component of the spindle assembly checkpoint. EMBO J. 19, 6098–6111 (2000).

    Article  CAS  Google Scholar 

  6. Ding, R., West, R. R., Morphew, D. M., Oakley, B. R. & McIntosh, J. R. The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds. Mol. Biol. Cell 8, 1461–1479 (1997).

    Article  CAS  Google Scholar 

  7. Hagan, I. M. & Petersen, J. The microtubule organizing centers of Schizosaccharomyces pombe. Curr. Top. Dev. Biol. 49, 133–159 (2000).

    Article  CAS  Google Scholar 

  8. Sawin, K. E., Lourenco, P. C. & Snaith, H. A. Microtubule nucleation at non-spindle pole body microtubule-organizing centers requires fission yeast centrosomin-related protein mod20p. Curr. Biol. 14, 763–775 (2004).

    Article  CAS  Google Scholar 

  9. Venkatram, S. et al. Identification and characterization of two novel proteins affecting fission yeast γ-tubulin complex function. Mol. Biol. Cell 15, 2287–2301 (2004).

    Article  CAS  Google Scholar 

  10. Beinhauer, J. D., Hagan, I. M., Hegemann, J. H. & Fleig, U. Mal3, the fission yeast homologue of the human APC-interacting protein EB-1 is required for microtubule integrity and the maintenance of cell form. J. Cell Biol. 139, 717–728 (1997).

    Article  CAS  Google Scholar 

  11. Busch, K. E. & Brunner, D. The microtubule plus end-tracking proteins mal3p and tip1p cooperate for cell-end targeting of interphase microtubules. Curr. Biol. 14, 548–559 (2004).

    Article  CAS  Google Scholar 

  12. Browning, H., Hackney, D. D. & Nurse, P. Targeted movement of cell end factors in fission yeast. Nature Cell Biol. 5, 812–818 (2003).

    Article  CAS  Google Scholar 

  13. Asakawa, K. et al. Mal3, the fission yeast EB1 homologue, cooperates with Bub1 spindle checkpoint to prevent monopolar attachment. EMBO Rep. 6, 1194–1200 (2005).

    Article  CAS  Google Scholar 

  14. Mallavarapu, A., Sawin, K. & Mitchison, T. A switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of Schizosaccharomyces pombe. Curr. Biol. 9, 1423–1426 (1999).

    Article  CAS  Google Scholar 

  15. Pinsky, B. A. & Biggins, S. The spindle checkpoint: tension versus attachment. Trends Cell Biol. 15, 486–493 (2005).

    Article  CAS  Google Scholar 

  16. Gunawardane, R. N. et al. Characterization and reconstitution of Drosophila γ-tubulin ring complex subunits. J. Cell Biol. 151, 1513–1524 (2000).

    Article  CAS  Google Scholar 

  17. Fava, F. et al. Human 76p: A new member of the γ-tubulin-associated protein family. J. Cell Biol. 147, 857–868 (1999).

    Article  CAS  Google Scholar 

  18. Murphy, S. M. et al. GCP5 and GCP6: two new members of the human γ-tubulin complex. Mol. Biol. Cell 12, 3340–3352 (2001).

    Article  CAS  Google Scholar 

  19. Ding, R., McDonald, K. L. & McIntosh, J. R. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J. Cell Biol. 120, 141–151 (1993).

    Article  CAS  Google Scholar 

  20. Kilmartin, J. V. & Goh, P. Y. Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body. EMBO J. 15, 4592–4602 (1996).

    Article  CAS  Google Scholar 

  21. Knop, M. & Schiebel, E. Spc98p and Spc97p of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J. 16, 6985–6995 (1997).

    Article  CAS  Google Scholar 

  22. Sundberg, H. A. & Davis, T. N. A mutational analysis identifies three functional regions of the spindle pole component Spc110p in Saccharomyces cerevisiae. Mol. Biol. Cell 8, 2575–2590 (1997).

    Article  CAS  Google Scholar 

  23. Yoder, T. J. et al. Analysis of a spindle pole body mutant reveals a defect in biorientation and illuminates spindle forces. Mol. Biol. Cell 16, 141–152 (2005).

    Article  CAS  Google Scholar 

  24. Haren, L. et al. NEDD1-dependent recruitment of the γ-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. J. Cell Biol. 172, 505–515 (2006).

    Article  CAS  Google Scholar 

  25. Luders, J., Patel, U. K. & Stearns, T. GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nature Cell Biol. 8, 137–147 (2006).

    Article  Google Scholar 

  26. Carazo-Salas, R. E., Antony, C. & Nurse, P. The kinesin Klp2 mediates polarization of interphase microtubules in fission yeast. Science 309, 297–300 (2005).

    Article  CAS  Google Scholar 

  27. Janson, M. E., Setty, T. G., Paoletti, A. & Tran, P. T. Efficient formation of bipolar microtubule bundles requires microtubule-bound γ-tubulin complexes. J. Cell Biol. 169, 297–308 (2005).

    Article  CAS  Google Scholar 

  28. Zimmerman, S., Tran, P. T., Daga, R. R., Niwa, O. & Chang, F. Rsp1p, a J domain protein required for disassembly and assembly of microtubule organizing centers during the fission yeast cell cycle. Dev. Cell 6, 497–509 (2004).

    Article  CAS  Google Scholar 

  29. Osmani, A. H., Davies, J., Oakley, C. E., Oakley, B. R. & Osmani, S. A. TINA interacts with the NIMA kinase in Aspergillus nidulans and negatively regulates astral microtubules during metaphase arrest. Mol. Biol. Cell 14, 3169–3179 (2003).

    Article  CAS  Google Scholar 

  30. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).

    Article  CAS  Google Scholar 

  31. Bähler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    Article  Google Scholar 

  32. Sato, M., Dhut, S. & Toda, T. New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe. Yeast 22, 583–591 (2005).

    Article  CAS  Google Scholar 

  33. Yamashita, A., Sato, M., Fujita, A., Yamamoto, M. & Toda, T. The roles of fission yeast Ase1 in mitotic cell division, meiotic nuclear oscillation, and cytokinesis checkpoint signaling. Mol. Biol. Cell 16, 1378–1395 (2005).

    Article  CAS  Google Scholar 

  34. Winey, M. et al. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 129, 1601–1615 (1995).

    Article  CAS  Google Scholar 

  35. Sato, M., Watanabe, Y., Akiyoshi, Y. & Yamamoto, M. 14-3-3 protein interferes with the binding of RNA to the phosphorylated form of fission yeast meiotic regulator Mei2p. Curr. Biol. 12, 141–145 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Uhlmann and R. E. Carazo-Salas for critical reading of the manuscript, discussion and technical support for microscopy (R. E. Carazo-Salas). We are grateful to A. McAinsh for pointing out the homology between Msd1 and TINA. We also thank F. Chang, K. Gould, K. Gull, O. Niwa, J. R. McIntosh, K. Sawin, K. Tanaka, I. Hagan, M. Yanagida and M. Yoshida for reagents and/or information, and A. Sugimoto and M. Yamamoto for support. This work was supported by Cancer Research UK (T.T.).

Author information

Authors and Affiliations

Authors

Contributions

M.T. performed all experiments and M.S. provided experimental materials and made suggestions for experimental design. K.A. contributed to initial identification of Msd1. Electron microscopy was performed by U.H. and C.A. D.B. contributed to sample preparation. M.T. and T.T. wrote the paper with support from M.S.

Corresponding author

Correspondence to Takashi Toda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, Supplementary table S1 and Supplementary notes (PDF 0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toya, M., Sato, M., Haselmann, U. et al. γ-Tubulin complex-mediated anchoring of spindle microtubules to spindle-pole bodies requires Msd1 in fission yeast. Nat Cell Biol 9, 646–653 (2007). https://doi.org/10.1038/ncb1593

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1593

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing