Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling

Abstract

Signal transduction through mitogen-activated protein kinase (MAPK) cascades is thought to occur through the assembly of macromolecular complexes. We quantified the abundance of complexes in the cytoplasm among the MAPKs Ste11, Ste7, Fus3 and the scaffold protein Ste5 in yeast pheromone signalling using fluorescence cross-correlation spectroscopy (FCCS). Significant complex concentrations were observed that remained unchanged on pheromone stimulation, demonstrating that global changes in complex abundances do not contribute to the transmission of signal through the cytoplasm. On the other hand, investigation of the distribution of active Fus3 (Fus3PP) across the cytoplasm using fluorescence lifetime imaging microscopy (FLIM) revealed a gradient of Fus3PP activity emanating from the tip of the mating projection. Spatial partitioning of Fus3 activating kinases to this site and deactivating phosphatases in the cytoplasm maintain this Fus3PP-activity distribution. Propagation of signalling from the shmoo is, therefore, spatially constrained by a gradient-generating reaction-diffusion mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of endogenously expressed Ste5, Ste7, Ste11 and Fus3 in vegetative and pheromone-stimulated cells.
Figure 2: Quantification of complexes between Ste5, Ste7, Ste11 and Fus3 in the cytoplasm through measurement of all six pair-wise interactions.
Figure 3: Recruitment of active Fus3PP to the shmoo.
Figure 4: Cytoplasmic phosphatase levels influence the binding of Fus3 at the shmoo.
Figure 5: A gradient of active Fus3PP emanates from the shmoo across the cytoplasm.

Similar content being viewed by others

References

  1. Dohlman, H. G. & Thorner, J. W. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu. Rev. Biochem. 70, 703–754 (2001).

    Article  CAS  Google Scholar 

  2. Inouye, C., Dhillon, N. & Thorner, J. Ste5 RING-H2 domain: role in Ste4-promoted oligomerization for yeast pheromone signaling. Science 278, 103–106 (1997).

    Article  CAS  Google Scholar 

  3. Garrenton, L. S., Young, S. L. & Thorner, J. Function of the MAPK scaffold protein, Ste5, requires a cryptic PH domain. Genes Dev. 20, 1946–1958 (2006).

    Article  CAS  Google Scholar 

  4. Winters, M. J., Lamson, R. E., Nakanishi, H., Neiman, A. M. & Pryciak, P. M. A membrane binding domain in the ste5 scaffold synergizes with gβγ binding to control localization and signaling in pheromone response. Mol. Cell 20, 21–32 (2005).

    Article  CAS  Google Scholar 

  5. van Drogen, F., Stucke, V. M., Jorritsma, G. & Peter, M. MAP kinase dynamics in response to pheromones in budding yeast. Nature Cell Biol. 3, 1051–1059 (2001).

    Article  CAS  Google Scholar 

  6. Cook, J. G., Bardwell, L., Kron, S. J. & Thorner, J. Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev. 10, 2831–2848 (1996).

    Article  CAS  Google Scholar 

  7. Bacia, K., Kim, S. A. & Schwille, P. Fluorescence cross-correlation spectroscopy in living cells. Nature Methods 3, 83–89 (2006).

    Article  CAS  Google Scholar 

  8. Zhan, X. L., Deschenes, R. J. & Guan, K. L. Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Genes Dev. 11, 1690–1702 (1997).

    Article  CAS  Google Scholar 

  9. Wang, Y. & Elion, E. A. Nuclear export and plasma membrane recruitment of the Ste5 scaffold are coordinated with oligomerization and association with signal transduction components. Mol. Biol. Cell 14, 2543–2558 (2003).

    Article  CAS  Google Scholar 

  10. Madden, K. & Snyder, M. Cell polarity and morphogenesis in budding yeast. Annu. Rev. Microbiol. 52, 687–744 (1998).

    Article  CAS  Google Scholar 

  11. Sheu, Y. J., Santos, B., Fortin, N., Costigan, C. & Snyder, M. Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis. Mol. Cell Biol. 18, 4053–4069 (1998).

    Article  CAS  Google Scholar 

  12. Remenyi, A., Good, M. C., Bhattacharyya, R. P. & Lim, W. A. The role of docking interactions in mediating signaling input, output, and discrimination in the yeast MAPK network. Mol. Cell 20, 951–962 (2005).

    Article  CAS  Google Scholar 

  13. Deminoff, S. J., Howard, S. C., Hester, A., Warner, S. & Herman, P. K. Using substrate-binding variants of the cAMP-dependent protein kinase to identify novel targets and a kinase domain important for substrate interactions in Saccharomyces cerevisiae. Genetics 173, 1909–1917 (2006).

    Article  CAS  Google Scholar 

  14. Bhattacharyya, R. P. et al. The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science 311, 822–826 (2006).

    Article  CAS  Google Scholar 

  15. Doi, K. et al. MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. EMBO J. 13, 61–70 (1994).

    Article  CAS  Google Scholar 

  16. Zhan, X. L. & Guan, K. L. A specific protein-protein interaction accounts for the in vivo substrate selectivity of Ptp3 towards the Fus3 MAP kinase. Genes Dev. 13, 2811–2827 (1999).

    Article  CAS  Google Scholar 

  17. Bastiaens, P., Caudron, M., Niethammer, P. & Karsenti, E. Gradients in the self-organization of the mitotic spindle. Trends Cell Biol. 16, 125–134 (2006).

    Article  CAS  Google Scholar 

  18. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nature Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article  CAS  Google Scholar 

  19. Wang, Z. X., Zhou, B., Wang, Q. M. & Zhang, Z. Y. A kinetic approach for the study of protein phosphatase-catalyzed regulation of protein kinase activity. Biochemistry 41, 7849–7857 (2002).

    Article  CAS  Google Scholar 

  20. Zhao, Y. & Zhang, Z. Y. The mechanism of dephosphorylation of extracellular signal-regulated kinase 2 by mitogen-activated protein kinase phosphatase 3. J. Biol. Chem. 276, 32382–32391 (2001).

    Article  CAS  Google Scholar 

  21. Bastiaens, P. I. & Squire, A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9, 48–52 (1999).

    Article  CAS  Google Scholar 

  22. Elion, E. A., Satterberg, B. & Kranz, J. E. FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1. Mol. Biol. Cell 4, 495–510 (1993).

    Article  CAS  Google Scholar 

  23. Lew, D. J. Yeast polarity: negative feedback shifts the focus. Curr. Biol. 15, R994–R996 (2005).

    Article  CAS  Google Scholar 

  24. Li, E., Cismowski, M. J. & Stone, D. E. Phosphorylation of the pheromone-responsive Gβ protein of Saccharomyces cerevisiae does not affect its mating-specific signaling function. Mol. Gen. Genet. 258, 608–618 (1998).

    Article  CAS  Google Scholar 

  25. Matheos, D., Metodiev, M., Muller, E., Stone, D. & Rose, M. D. Pheromone-induced polarization is dependent on the Fus3p MAPK acting through the formin Bni1p. J. Cell Biol. 165, 99–109 (2004).

    Article  CAS  Google Scholar 

  26. Metodiev, M. V., Matheos, D., Rose, M. D. & Stone, D. E. Regulation of MAPK function by direct interaction with the mating-specific Gα in yeast. Science 296, 1483–1486 (2002).

    Article  CAS  Google Scholar 

  27. Ozbudak, E. M., Becskei, A. & van Oudenaarden, A. A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization. Dev. Cell 9, 565–571 (2005).

    Article  CAS  Google Scholar 

  28. Qi, M. & Elion, E. A. Formin-induced actin cables are required for polarized recruitment of the Ste5 scaffold and high level activation of MAPK Fus3. J. Cell Sci. 118, 2837–2848 (2005).

    Article  CAS  Google Scholar 

  29. Hwang, E., Kusch, J., Barral, Y. & Huffaker, T. C. Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables. J. Cell Biol. 161, 483–488 (2003).

    Article  CAS  Google Scholar 

  30. Yin, H., Pruyne, D., Huffaker, T. C. & Bretscher, A. Myosin V orientates the mitotic spindle in yeast. Nature 406, 1013–1015 (2000).

    Article  CAS  Google Scholar 

  31. Limpert, E., Stahel, W. A. & Abbt, M. Log-normal distributions across the sciences: Keys and clues. Bioscience 51, 341–352 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank R. Pepperkok, T. Zimmermann, J. Rietdorf, S. Terjung and A. Seitz of the advanced light microscopy facility (ALMF) of EMBL and L. Kuschel (Leica Microsystems, Germany) for their continuous support, and our reviewers for constructive comments. G. F. Fink is acknowledged for plasmid pBI479 (PFUS1–lacZ) and W. A. Lim for plasmids containing STE7 and STE5 mutants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philippe I. H. Bastiaens or Michael Knop.

Supplementary information

Supplementary Information

Supplementary figures S1 to S6, Supplementary materials and methods (PDF 1842 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeder, C., Hink, M., Kinkhabwala, A. et al. Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat Cell Biol 9, 1319–1326 (2007). https://doi.org/10.1038/ncb1652

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1652

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing