Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Nuclear reprogramming: A key to stem cell function in regenerative medicine

Abstract

The goal of regenerative medicine is to restore form and function to damaged tissues. One potential therapeutic approach involves the use of autologous cells derived from the bone marrow (bone marrow-derived cells, BMDCs). Advances in nuclear transplantation, experimental heterokaryon formation and the observed plasticity of gene expression and phenotype reported in multiple phyla provide evidence for nuclear plasticity. Recent observations have extended these findings to show that endogenous cells within the bone marrow have the capacity to incorporate into defective tissues and be reprogrammed. Irrespective of the mechanism, the potential for new gene expression patterns by BMDCs in recipient tissues holds promise for developing cellular therapies for both proliferative and post-mitotic tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the possible mechanisms of BMDC incorporation into non-haematopoietic tissues.
Figure 2: Reprogramming gene expression by nuclear transplantation (cloning) and by experimentally induced heterokaryon formation.
Figure 3: Reprogramming of bone marrow in non-haematopoietic tissues in vivo.

Similar content being viewed by others

References

  1. Blau, H.M., Brazelton, T.R. & Weimann, J.M. The evolving concept of a stem cell: entity or function? Cell 105, 829–841 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Weissman, I.L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Alonso, L. & Fuchs, E. Stem cells of the skin epithelium. Proc. Natl Acad. Sci. USA 100, 11830–11835 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Watt, F.M. & Hogan, B.L. Out of Eden: stem cells and their niches. Science 287, 1427–1430 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Tosh, D. & Slack, J.M. How cells change their phenotype. Nature Rev. Mol. Cell Biol. 3, 187–194 (2002).

    Article  CAS  Google Scholar 

  6. Eguchi, G. & Kodama, R. Transdifferentiation. Curr. Opin. Cell Biol. 5, 1023–1028 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Beresford, W.A. Direct transdifferentiation: can cells change their phenotype without dividing? Cell Differ. Dev. 29, 81–93 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Briggs, R., King, T. Transplantation of living nuclei from blastula cells into enucleated frogs' eggs. Proc. Natl Acad. Sci. USA 38, 455–463 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gurdon, J.B. Adult frogs derived from the nuclei of single somatic cells. Dev. Biol. 4, 256–273 (1962).

    Article  CAS  PubMed  Google Scholar 

  10. Briggs, R. & King, T.J. in The Cell Vol. 1 (eds Brachet, J. & Mirsky, A.E.) 537–617 (Academic, New York, 1959).

    Book  Google Scholar 

  11. Di Berardino, M.A. & King, T.J. Development and cellular differentiation of neural nuclear-transplants of known karyotype. Dev. Biol. 15, 102–128 (1967).

    Article  CAS  PubMed  Google Scholar 

  12. Gurdon, J.B. & Uehlinger, V. “Fertile” intestine nuclei. Nature 210, 1240–1241 (1966).

    Article  CAS  PubMed  Google Scholar 

  13. Davidson, R.L. Gene expression in somatic cell hybrids. Annu. Rev. Genet. 8, 195–218 (1974).

    Article  CAS  PubMed  Google Scholar 

  14. Ephrussi, B., Davidson, R.L., Weiss, M.C., Harris, H. & Klein, G. Malignancy of somatic cell hybrids. Nature 224, 1314–1316 (1969).

    Article  CAS  PubMed  Google Scholar 

  15. Harris, H., Wiener, F. & Klein, G. The analysis of malignancy by cell fusion. 3. Hybrids between diploid fibroblasts and other tumour cells. J. Cell. Sci. 8, 681–692 (1971).

    Article  CAS  PubMed  Google Scholar 

  16. Blau, H.M. & Baltimore, D. Differentiation requires continuous regulation. J. Cell Biol. 112, 781–783 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Blau, H.M. How fixed is the differentiated state? Lessons from heterokaryons. Trends Genet. 5, 268–572 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Ringertz, N. & Savage, R.E. in Cell Hybrids 87–118 (Academic, New York, 1976).

    Book  Google Scholar 

  19. Blau, H.M., Chiu, C.P. & Webster, C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32, 1171–1180 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Blau, H.M., Chiu, C.P., Pavlath, G.K. & Webster, C. Muscle gene expression in heterokaryons. Adv. Exp. Med. Biol. 182, 231–247 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Chiu, C.P. & Blau, H.M. Reprogramming cell differentiation in the absence of DNA synthesis. Cell 37, 879–887 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Chiu, C.P. & Blau, H.M. 5-Azacytidine permits gene activation in a previously noninducible cell type. Cell 40, 417–424 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Baron, M.H. & Maniatis, T. Rapid reprogramming of globin gene expression in transient heterokaryons. Cell 46, 591–602 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Wright, W.E. Expression of differentiated functions in heterokaryons between skeletal myocytes, adrenal cells, fibroblasts and glial cells. Exp. Cell Res. 151, 55–69 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Wright, W.E. Induction of muscle genes in neural cells. J. Cell Biol. 98, 427–435 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Spear, B.T. & Tilghman, S.M. Role of α-fetoprotein regulatory elements in transcriptional activation in transient heterokaryons. Mol. Cell Biol. 10, 5047–5054 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gurdon, J.B. & Byrne, J.A. The first half-century of nuclear transplantation. Proc. Natl Acad. Sci. USA 100, 8048–8052 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rhind, S.M. et al. Human cloning: can it be made safe? Nature Rev. Genet. 4, 855–864 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. & Campbell, K.H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Prather, R.S., Sims, M.M. & First, N.L. Nuclear transplantation in early pig embryos. Biol. Reprod. 41, 414–418 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Stice, S.L. & Robl, J.M. Nuclear reprogramming in nuclear transplant rabbit embryos. Biol. Reprod. 39, 657–664 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Cheong, H.T., Takahashi, Y. & Kanagawa, H. Birth of mice after transplantation of early cell-cycle-stage embryonic nuclei into enucleated oocytes. Biol. Reprod. 48, 958–963 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Sims, M. & First, N.L. Production of calves by transfer of nuclei from cultured inner cell mass cells. Proc. Natl Acad. Sci. USA 91, 6143–6147 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meng, L., Ely, J.J., Stouffer, R.L. & Wolf, D.P. Rhesus monkeys produced by nuclear transfer. Biol. Reprod. 57, 454–459 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Hwang, W.S. et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science 303, 1669–1674 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Eggan, K. et al. Mice cloned from olfactory sensory neurons. Nature 428, 44–49 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Rideout, W.M., 3rd, Eggan, K. & Jaenisch, R. Nuclear cloning and epigenetic reprogramming of the genome. Science 293, 1093–1098 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Hubner, K. et al. Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. Mombaerts, P. Therapeutic cloning in the mouse. Proc. Natl Acad. Sci. USA 100, 11924–11925 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cotran, C., Kumar, V. & Tucker, C. Pathologic Basis of Disease, 1425 (W.B. Saunders, Philadelphia, 1999).

    Google Scholar 

  42. Krakowski, M.L. et al. Pancreatic expression of keratinocyte growth factor leads to differentiation of islet hepatocytes and proliferation of duct cells. Am. J. Pathol. 154, 683–691 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rao, M.S. et al. Almost total conversion of pancreas to liver in the adult rat: a reliable model to study transdifferentiation. Biochem. Biophys. Res. Commun. 156, 131–136 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Reddy, J.K., Rao, M.S., Yeldandi, A.V., Tan, X.D. & Dwivedi, R.S. Pancreatic hepatocytes. An in vivo model for cell lineage in pancreas of adult rat. Dig. Dis. Sci. 36, 502–509 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Dabeva, M.D. et al. Differentiation of pancreatic epithelial progenitor cells into hepatocytes following transplantation into rat liver. Proc. Natl Acad. Sci. USA 94, 7356–7361 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hadorn, E. in The Genetics and Biology of Drosophila (ed. Ashburner, M.) 556–617 (Academic, San Diego, 1976).

    Google Scholar 

  47. Lawrence, P.A. & Morata, G. The elements of the bithorax complex. Cell 35, 595–601 (1983).

    Article  CAS  PubMed  Google Scholar 

  48. Lo, D.C., Allen, F. & Brockes, J.P. Reversal of muscle differentiation during urodele limb regeneration. Proc. Natl Acad. Sci. USA 90, 7230–7234 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brockes, J.P. & Kumar, A. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nature Rev. Mol. Cell Biol. 3, 566–574 (2002).

    Article  CAS  Google Scholar 

  50. Okada, T.S. Transdifferentiation Flexibility in Cell Differentiation, (Clarendon, Oxford, 1991).

    Google Scholar 

  51. Poss, K.D., Keating, M.T. & Nechiporuk, A. Tales of regeneration in zebrafish. Dev. Dyn. 226, 202–210 (2003).

    Article  PubMed  Google Scholar 

  52. Echeverri, K. & Tanaka, E.M. Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 298, 1993–1996 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Reader, J.R. et al. Pathogenesis of mucous cell metaplasia in a murine asthma model. Am. J. Pathol. 162, 2069–2078 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Ianus, A., Holz, G.G., Theise, N.D. & Hussain, M.A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest. 111, 843–850 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Krause, D.S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Jackson, K.A., Mi, T. & Goodell, M.A. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc. Natl Acad. Sci. USA 96, 14482–14486 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. LaBarge, M.A. & Blau, H.M. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111, 589–601 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Lagasse, E. et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Med. 6, 1229–1234 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394 (1999).

    CAS  PubMed  Google Scholar 

  61. Camargo, F.D., Green, R., Capetenaki, Y., Jackson, K.A. & Goodell, M.A. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nature Med. 9, 1520–1527 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Corbel, S.Y. et al. Contribution of hematopoietic stem cells to skeletal muscle. Nature Med. 9, 1528–1532 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Vassilopoulos, G., Wang, P.R. & Russell, D.W. Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, X. et al. Kinetics of liver repopulation after bone marrow transplantation. Am. J. Pathol. 161, 565–574 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Weimann, J.M., Charlton, C.A., Brazelton, T.R., Hackman, R.C. & Blau, H.M. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl Acad. Sci. USA 100, 2088–2093 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Priller, J. et al. Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J. Cell Biol. 155, 733–738 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mezey, E., Chandross, K.J., Harta, G., Maki, R.A. & McKercher, S.R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Brazelton, T.R., Rossi, F.M., Keshet, G.I. & Blau, H.M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Kale, S. et al. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J. Clin. Invest. 112, 42–49 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Petersen, B.E. et al. Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Wagers, A.J. & Weissman, I.L. Plasticity of adult stem cells. Cell 116, 639–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Korbling, M. & Estrov, Z. Adult stem cells for tissue repair — a new therapeutic concept? N. Engl. J. Med. 349, 570–582 (2003).

    Article  PubMed  Google Scholar 

  73. Anderson, D.J., Gage, F.H. & Weissman, I.L. Can stem cells cross lineage boundaries? Nature Med. 7, 393–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Smith, C. et al. Purification and partial characterization of a human hematopoietic precursor population. Blood 77, 2122–2128 (1991).

    Article  CAS  PubMed  Google Scholar 

  75. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. Morrison, S.J. & Weissman, I.L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Uchida, N. & Weissman, I.L. Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J. Exp. Med. 175, 175–184 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Weimann, J.M., Johansson, C.B., Trejo, A. & Blau, H.M. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nature Cell Biol. 5, 959–966 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Alvarez-Dolado, M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968–973 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Wagers, A.J., Sherwood, R.I., Christensen, J.L. & Weissman, I.L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Raff, M. Adult stem cell plasticity: fact or artifact? Annu. Rev. Cell Dev. Biol 19, 1–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Harris, R.G. et al. Lack of a fusion requirement for development of bone marrow-derived epithelia. Science 305, 90–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Dreyfus, P.A. et al. Adult bone marrow-derived stem cells in muscle connective tissue and satellite cell niches. Am. J. Pathol. 164, 773–779 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fukada, S. et al. Muscle regeneration by reconstitution with bone marrow or fetal liver cells from green fluorescent protein-gene transgenic mice. J. Cell Sci. 115, 1285–1293 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Blau, H.M. A twist of fate. Nature 419, 437 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Doyonnas, R., LaBarge, M.A., Sacco, A., Charlton, C. & Blau, H.M. Hematopoietic contribution to skeletal muscle by myelomonocytic precursors. Proc. Natl Acad. Sci. USA. (in the press).

  89. Camargo, F.D., Finegold, M. & Goodell, M.A. Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J. Clin. Invest. 113, 1266–1270 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Willenbring, H. et al. Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nature Med. 10, 744–748 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Grove, J.E. et al. Marrow-derived cells as vehicles for delivery of gene therapy to pulmonary epithelium. Am. J. Respir. Cell Mol. Biol. 27, 645–651 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Pavlath, G.K. & Blau, H.M. Expression of muscle genes in heterokaryons depends on gene dosage. J. Cell Biol. 102, 124–130 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. LaBarge, A. Palermo, R. Doyonnas, T. Brazelton, D. Spiegel and other members of the Blau laboratory for helpful discussions and critical reading of the manuscript. We especially thank C. Johansson for contributing the Purkinje cell image. We apologize to those whose important work we were not able to cover owing to space and reference limitations. J.P. is supported by an NIH training grant (HD 07249) as a postdoctoral fellow at Stanford University, and is a resident in the Division of Plastic and Reconstructive Surgery, Department of Surgery at the University of California, San Francisco (U.C.S.F.). H.M.B. is supported by: NIH grants AG 020961, AG 009521, HD 018179, Ellison AG-SS-0817, the McKnight Endowment Fund for Neuroscience and the Baxter Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomerantz, J., Blau, H. Nuclear reprogramming: A key to stem cell function in regenerative medicine. Nat Cell Biol 6, 810–816 (2004). https://doi.org/10.1038/ncb0904-810

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0904-810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing