Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos

Abstract

Partitioning tissues into compartments that do not intermix is essential for the correct morphogenesis of animal embryos and organs1,2,3. Several hypotheses have been proposed to explain compartmental cell sorting, mainly differential adhesion1,2,3,4,5,6,7,8,9, but also regulation of the cytoskeleton10,11 or of cell proliferation10,12. Nevertheless, the molecular and cellular mechanisms that keep cells apart at boundaries remain unclear. Here we demonstrate, in early Drosophila melanogaster embryos, that actomyosin-based barriers stop cells from invading neighbouring compartments. Our analysis shows that cells can transiently invade neighbouring compartments, especially when they divide, but are then pushed back into their compartment of origin. Actomyosin cytoskeletal components are enriched at compartmental boundaries, forming cable-like structures when the epidermis is mitotically active. When MyoII (non-muscle myosin II) function is inhibited, including locally at the cable by chromophore-assisted laser inactivation (CALI)13,14, in live embryos, dividing cells are no longer pushed back, leading to compartmental cell mixing. We propose that local regulation of actomyosin contractibility, rather than differential adhesion, is the primary mechanism sorting cells at compartmental boundaries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myosin II is required for cell sorting at lineage restriction boundaries in Drosophila embryos.
Figure 2: An actomyosin cable forms at the PS boundary.
Figure 3: Cell divisions challenge PS boundaries.
Figure 4: CALI inactivation of MyoII blocks cytokinesis.
Figure 5: CALI inactivation of the MyoII cable causes cell sorting defects at PS boundaries.

Similar content being viewed by others

References

  1. Dahmann, C. & Basler, K. Compartment boundaries: at the edge of development. Trends Genet. 15, 320–326 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Irvine, K. D. & Rauskolb, C. Boundaries in development: formation and function. Annu. Rev. Cell Dev. Biol. 17, 189–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Tepass, U., Godt, D. & Winklbauer, R. Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr. Opin. Genet. Dev. 12, 572–582 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Dahmann, C. & Basler, K. Opposing transcriptional outputs of Hedgehog signaling and Engrailed control compartmental cell sorting at the Drosophila A/P boundary. Cell 100, 411–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Garcia-Bellido, A., Ripoll, P. & Morata, G. Developmental compartmentalisation of the wing disk of Drosophila. Nature New Biol. 245, 251–253 (1973).

    Article  CAS  PubMed  Google Scholar 

  6. Inoue, T. et al. Role of cadherins in maintaining the compartment boundary between the cortex and striatum during development. Development 128, 561–569 (2001).

    CAS  PubMed  Google Scholar 

  7. Milan, M., Weihe, U., Perez, L. & Cohen, S. M. The LRR proteins Capricious and Tartan mediate cell interactions during DV boundary formation in the Drosophila wing. Cell 106, 785–794 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Schlichting, K., Demontis, F. & Dahmann, C. Cadherin Cad99C is regulated by Hedgehog signaling in Drosophila. Dev. Biol. 279, 142–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Vegh, M. & Basler, K. A genetic screen for hedgehog targets involved in the maintenance of the Drosophila anteroposterior compartment boundary. Genetics 163, 1427–1438 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Major, R. J. & Irvine, K. D. Influence of Notch on dorsoventral compartmentalization and actin organization in the Drosophila wing. Development 132, 3823–3833 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Major, R. J. & Irvine, K. D. Localization and requirement for Myosin II at the dorsal-ventral compartment boundary of the Drosophila wing. Dev. Dyn. 235, 3051–3058 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. O'Brochta, D. A. & Bryant, P. J. A zone of non-proliferating cells at a lineage restriction boundary in Drosophila. Nature 313, 138–141 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Jacobson, K., Rajfur, Z., Vitriol, E. & Hahn, K. Chromophore-assisted laser inactivation in cell biology. Trends Cell Biol. 18, 443–450 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Jay, D. G. Selective destruction of protein function by chromophore-assisted laser inactivation. Proc. Natl Acad. Sci. USA 85, 5454–5458 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Davy, A., Bush, J. O. & Soriano, P. Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome. PLoS Biol. 4, 1763–1776 (2006).

    Article  CAS  Google Scholar 

  16. Perez-Pomares, J. M. & Foty, R. A. Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. Bioessays 28, 809–821 (2006).

    Article  PubMed  Google Scholar 

  17. Twigg, S. R. et al. Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc. Natl Acad. Sci. USA 101, 8652–8657 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Blair, S. S. & Ralston, A. Smoothened-mediated Hedgehog signalling is required for the maintenance of the anterior-posterior lineage restriction in the developing wing of Drosophila. Development 124, 4053–4063 (1997).

    CAS  PubMed  Google Scholar 

  19. Cheng, Y. C. et al. Notch activation regulates the segregation and differentiation of rhombomere boundary cells in the zebrafish hindbrain. Dev. Cell 6, 539–550 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Cooke, J. E., Kemp, H. A. & Moens, C. B. EphA4 is required for cell adhesion and rhombomere-boundary formation in the zebrafish. Curr. Biol. 15, 536–542 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Mellitzer, G., Xu, Q. & Wilkinson, D. G. Eph receptors and ephrins restrict cell intermingling and communication. Nature 400, 77–81 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Milan, M. & Cohen, S. M. A re-evaluation of the contributions of Apterous and Notch to the dorsoventral lineage restriction boundary in the Drosophila wing. Development 130, 553–562 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Morata, G. & Lawrence, P. A. Control of compartment development by the engrailed gene in Drosophila. Nature 255, 614–617 (1975).

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez, I. & Basler, K. Control of compartmental affinity boundaries by hedgehog. Nature 389, 614–618 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Shen, J. & Dahmann, C. The role of Dpp signaling in maintaining the Drosophila anteroposterior compartment boundary. Dev. Biol. 279, 31–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Xu, Q., Mellitzer, G., Robinson, V. & Wilkinson, D. G. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399, 267–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Sanson, B. Generating patterns from fields of cells: examples from Drosophila segmentation. EMBO Rpts 2, 1083–1088 (2001).

    Article  CAS  Google Scholar 

  28. Vincent, J. P. & O'Farrell, P. H. The state of engrailed expression is not clonally transmitted during early Drosophila development. Cell 68, 923–931 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Zallen, J. A. & Wieschaus, E. Patterned gene expression directs bipolar planar polarity in Drosophila. Dev. Cell 6, 343–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Rajfur, Z., Roy., P., Otey, C., Romer, L. & Jacobson, K. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nature Cell Biol. 4, 286–293 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Diefenbach, T. J. et al. Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone. J. Cell Biol. 158, 1207–1217 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, F. S., Wolenski, J. S., Cheney, R. E., Mooseker, M. S. & Jay, D. G. Function of myosin-V in filopodial extension of neuronal growth cones. Science 273, 660–663 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Horstkotte, E., Schroder, T., Niewohner, J., Jay, D. G. & Henning, S. W. Toward understanding the mechanism of chromophore-assisted laser inactivation - evidence for the primary photochemical steps. Photochem. Photobiol. 81, 358–366 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Liao, J. C., Roider, J. & Jay, D. G. Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free-radicals. Proc. Natl Acad. Sci. USA 91, 2659–2663 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Yan, P. et al. Fluorophore-assisted light inactivation of Calmodulin involves singlet-oxygen mediated cross-linking and methionine oxidation. Biochemistry 45, 4736–4748 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Laplante, C. & Nilson, L. A. Differential expression of the adhesion molecule Echinoid drives epithelial morphogenesis in Drosophila. Development 133, 3255–3264 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Wei, S. Y. et al. Echinoid is a component of adherens junctions that cooperates with DE-Cadherin to mediate cell adhesion. Dev. Cell 8, 493–504 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Huber, A. B., Kolodkin, A. L., Ginty, D. D. & Cloutier, J.-F.o. Signaling at the growth cone: ligand–receptor complexes and the control of axon growth and guidance. Ann. Rev. Neurosci. 26, 509–563 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Townes, P. L. & Holtfreter, J. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120 (1955).

    Article  Google Scholar 

  40. Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nature Cell Biol. 10, 429–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Royou, A., Sullivan, W. & Karess, R. Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity. J. Cell Biol. 158, 127–137 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Clyne, P. J., Brotman, J. S., Sweeney, S. T. & Davis, G. Green fluorescent protein tagging Drosophila proteins at their native genomic loci with small P elements. Genetics 165, 1433–1441 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Kiehart, D., Galbraith, C., Edwards, K., Rickoll, W. & Montague, R. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149, 471–490 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Winter, C. G. et al. Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 105, 81–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  46. Sanson, B., White, P. & Vincent, J. P. Uncoupling cadherin-based adhesion from wingless signalling in Drosophila. Nature 383, 627–630 (1996).

    Article  PubMed  Google Scholar 

  47. Franke, J., Montague, R. & Kiehart, D. Nonmuscle Myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure. Current Biology 15, 2208–2221 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Baker, N. E. Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. EMBO J. 6, 1765–1773 (1987).

    Article  CAS  PubMed  Google Scholar 

  49. Young, P. E., Richman, A. M., Ketchum, A. S. & Kiehart, D. P. Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev. 7, 29–41 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Tearle, R. G. & Nusslein-Volhard, C. Tübingen mutants and stock list. Dros. Inf. Serv. 66, 209–269 (1987).

    Google Scholar 

  51. Ryder, E. et al. The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics 177, 615–629 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Motzny, C. K. & Holmgren, R. The Drosophila cubitus interruptus protein and its role in the wingless and hedgehog signal transduction pathways. Mech. Dev. 52, 137–150 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Chandraratna, D., Lawrence, N., Welchman, D. P. & Sanson, B. An in vivo model of apoptosis: linking cell behaviours and caspase substrates in embryos lacking DIAP1. J. Cell Sci. 120, 2594–2608 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Kiehart, D. P. & Feghali, R. Cytoplasmic myosin from Drosophila melanogaster. J. Cell Biol. 103, 1517–1525 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Lawrence for the initial observation of the segmental pattern of MyoII cables and for Supplementary Information, Movie 1; B. Bordbar for help in screening chromosomal deficiencies; D. Kiehart, R. Karess, G. Davis, J. Pradel, R. Holmgren, the UK Protein Trap Insertion Consortium, the Bloomington Stock Centre and the Developmental Studies Hybridoma Bank for reagents and B. Harris, R. Keynes, L. Perrin, M. Sémériva and D. St Johnston for critical reading of the manuscript. This work was funded by HFSP and Wellcome Trust grants to B.S; a Wellcome Trust Program Grant to A.H.B; an EMBO fellowship to A.P-M and ARC (Association pour la Recherche contre le Cancer) and Herchel Smith fellowships to B.M.

Author information

Authors and Affiliations

Authors

Contributions

Experimental work and data analysis were carried out by A.P-M and B.M. under supervision of A.H.B. and B.S. All authors contributed to data interpretation and writing of the manuscript.

Corresponding authors

Correspondence to Bruno Monier or Bénédicte Sanson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information Figures (PDF 1438 kb)

Supplementary Information

Supplementary Information Movie 1 (MOV 8051 kb)

Supplementary Information

Supplementary Information Movie 2 (MOV 6338 kb)

Supplementary Information

Supplementary Information Movie 3 (MOV 1104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monier, B., Pélissier-Monier, A., Brand, A. et al. An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos. Nat Cell Biol 12, 60–65 (2010). https://doi.org/10.1038/ncb2005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2005

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing