Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility

Abstract

The systems that refine actomyosin forces during motility remain poorly understood. Septins assemble on the T-cell cortex and are enriched at the mid-zone in filaments. Septin knockdown causes membrane blebbing, excess leading-edge protrusions and lengthening of the trailing-edge uropod. The associated loss of rigidity permits motility, but cells become uncoordinated and poorly persistent. This also relieves a previously unrecognized restriction to migration through small pores. Pharmacologically rigidifying cells counteracts this effect, and relieving cytoskeletal rigidity synergizes with septin depletion. These data suggest that septins tune actomyosin forces during motility and probably regulate lymphocyte trafficking in confined tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Septin complexes form in T cells, assemble on the cortex and form filaments and puncta in the mid-zone.
Figure 2: Septin knockdown in T cells results in augmented length and bending of uropods.
Figure 3: Septin complexes are required for structural stability of the cell cortex and at the T-cell mid-zone.
Figure 4: Integrity of tubulin and actomyosin cytoskeletons in septin-deficient T cells.
Figure 5: Septins regulate motility and transmigration.
Figure 6: Septins and microtubules regulate rigidity and transmigration.

Similar content being viewed by others

References

  1. Sanchez-Madrid, F. & del Pozo, M.A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 (1999).

    Article  CAS  Google Scholar 

  2. Yan, C. et al. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility. EMBO J. 22, 3602–3612 (2003).

    Article  CAS  Google Scholar 

  3. Snapper, S. B. et al. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J. Leukoc. Biol. 77, 993–998 (2005).

    Article  CAS  Google Scholar 

  4. Snapper, S. B. et al. N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nature Cell Biol. 3, 897–904 (2001).

    Article  CAS  Google Scholar 

  5. Jacobelli, J., Chmura, S. A., Buxton, D. B., Davis, M. M. & Krummel, M. F. A Single class II myosin modulates T cell motility and stopping but not synapse assembly. Nature Immunol. 5, 531–538 (2004).

    Article  CAS  Google Scholar 

  6. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–14 (2003).

    Article  CAS  Google Scholar 

  7. Sasaki, A. T. et al. G protein-independent Ras/PI3K/F-actin circuit regulates basic cell motility J. Cell Biol. 178, 185–191 (2007).

    Article  CAS  Google Scholar 

  8. Koshland, D., Kent, J. C. & Hartwell, L.H. Genetic analysis of the mitotic transmission of minichromosomes. Cell 40, 393–403 (1985).

    Article  CAS  Google Scholar 

  9. Versele, M. & Thorner, J. Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol. 15, 414–424 (2005).

    Article  CAS  Google Scholar 

  10. Kinoshita, M. Diversity of septin scaffolds. Curr. Opin. Cell Biol. 18, 54–60 (2006).

    Article  CAS  Google Scholar 

  11. Barral, Y., Mermall, V., Mooseker, M. S. & Snyder, M. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol. Cell 5, 841–851 (2000).

    Article  CAS  Google Scholar 

  12. Takizawa, P. A., DeRisi, J.L., Wilhelm, J. E. & Vale, R.D. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290, 341–344 (2000).

    Article  CAS  Google Scholar 

  13. Montagna, C. et al. The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res. 63, 2179–2187 (2003).

    CAS  PubMed  Google Scholar 

  14. Osaka, M., Rowley, J. D. & Zeleznik-Le, N.J. MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). Proc. Natl Acad. Sci. USA 96, 6428–6433 (1999).

    Article  CAS  Google Scholar 

  15. Sorensen, A. B. et al. Sint1, a common integration site in SL3-3-induced T-cell lymphomas, harbors a putative proto-oncogene with homology to the septin gene family. J. Virol. 74, 2161–2168 (2000).

    Article  CAS  Google Scholar 

  16. Ihara, M. et al. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev. Cell 8, 343–352 (2005).

    Article  CAS  Google Scholar 

  17. Tada, T. et al. Role of Septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr. Biol. 17, 1752–1758 (2007).

    Article  CAS  Google Scholar 

  18. Dent, J. et al. A prototypic platelet septin and its participation in secretion. Proc. Natl Acad. Sci. USA 99, 3064–3069 (2002).

    Article  CAS  Google Scholar 

  19. Rodal, A. A., Kozubowski, L., Goode, B. L., Drubin, D. G. & Hartwig, J. H. Actin and septin ultrastructures at the budding yeast cell cortex. Mol. Biol. Cell 16, 372–384 (2005).

    Article  CAS  Google Scholar 

  20. Sirajuddin, M. et al. Structural insight into filament formation by mammalian septins. Nature 449, 311–315 (2007).

    Article  CAS  Google Scholar 

  21. Tooley, A. J., Jacobelli, J., Moldovan, M. C., Douglas, A. & Krummel, M. F. T cell synapse assembly: proteins, motors and the underlying cell biology. Semin. Immunol. 17, 65–75 (2005).

    Article  CAS  Google Scholar 

  22. Hall, P. A., Jung, K., Hillan, K. J. & Russell, S. E. Expression profiling the human septin gene family. J. Pathol. 206, 269–278 (2005).

    Article  CAS  Google Scholar 

  23. Kinoshita, M., Field, C. M., Coughlin, M. L., Straight, A. F. & Mitchison, T. J. Self- and actin-templated assembly of mammalian septins. Dev. Cell 3, 791–802 (2002).

    Article  CAS  Google Scholar 

  24. Kremer, B. E., Haystead, T. & Macara, I. G. Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. Mol. Biol. Cell 16, 4648–4659 (2005).

    Article  CAS  Google Scholar 

  25. Nagata, K., Asano, T., Nozawa, Y. & Inagaki, M. Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. J. Biol. Chem. 279, 55895–55904 (2004).

    Article  CAS  Google Scholar 

  26. Surka, M. C., Tsang, C. W. & Trimble, W. S. The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol. Biol. Cell 13, 3532–3545 (2002).

    Article  CAS  Google Scholar 

  27. Spiliotis, E. T., Kinoshita, M. & Nelson, W. J. A mitotic septin scaffold required for Mammalian chromosome congression and segregation. Science 307, 1781–1785 (2005).

    Article  CAS  Google Scholar 

  28. Nagata, K. et al. Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J. Biol. Chem. 278, 18538–18543 (2003).

    Article  CAS  Google Scholar 

  29. Ratner, S., Sherrod, W. S. & Lichlyter, D. Microtubule retraction into the uropod and its role in T cell polarization and motility. J. Immunol. 159, 1063–1067 (1997).

    CAS  PubMed  Google Scholar 

  30. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004).

    Article  CAS  Google Scholar 

  31. Caviston, J. P., Longtine, M., Pringle, J. R. & Bi, E. The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol. Biol. Cell 14, 4051–4066 (2003).

    Article  CAS  Google Scholar 

  32. Dobbelaere, J., Gentry, M. S., Hallberg, R. L. & Barral, Y. Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev. Cell 4, 345–357 (2003).

    Article  CAS  Google Scholar 

  33. Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L. & Mitchison, T. J. Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435, 365–369 (2005).

    Article  CAS  Google Scholar 

  34. Andrew, N. & Insall, R. H. Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions. Nature Cell Biol. 9, 193–200 (2007).

    Article  CAS  Google Scholar 

  35. Field, C. M., Coughlin, M., Doberstein, S., Marty, T. & Sullivan, W. Characterization of anillin mutants reveals essential roles in septin localization and plasma membrane integrity. Development 132, 2849–2860 (2005).

    Article  CAS  Google Scholar 

  36. Russell, S. E. & Hall, P. A. Do septins have a role in cancer? Br. J. Cancer 93, 499–503 (2005).

    Article  CAS  Google Scholar 

  37. Hall, P. A. & Russell, S. E. The pathobiology of the septin gene family. J. Pathol. 204, 489–505 (2004).

    Article  CAS  Google Scholar 

  38. Nottenburg, C., Gallatin, W. M. & St John, T. Lymphocyte HEV adhesion variants differ in the expression of multiple gene sequences. Gene 95, 279–284 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Weiss and M.T. McManus for insight and critical discussions, ShuWei Jiang and Cliff McArthur for expert technical assistance with cell sorting and Christine Lin and Ed Shimazu for computer support. We also thank Cynthia Voong for critical reading of the manuscript and members of the Krummel lab for thoughtful discussions. This work was supported by the NIH(R21-AI062899), the Sandler family fund, the National Science Foundation and the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Contributions

J.G. and A.T. performed all experiments and wrote the manuscript; J.J. and P.B. assisted with the data analysis and planning the experiments; W.S.T. and M.K. contributed reagents and gave conceptual assistance; M.F.K. coordinated the project and assisted with planning the experiments and writing the manuscript. All authors discussed the results and manuscript text.

Corresponding author

Correspondence to Matthew F. Krummel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1124 kb)

Supplementary Information

Supplementary Movie 1 (MOV 2753 kb)

Supplementary Information

Supplementary Movie 2 (MOV 1203 kb)

Supplementary Information

Supplementary Movie 3 (MOV 1506 kb)

Supplementary Information

Supplementary Movie 4 (MOV 1193 kb)

Supplementary Information

Supplementary Movie 5 (MOV 524 kb)

Supplementary Information

Supplementary Movie 6 (MOV 396 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tooley, A., Gilden, J., Jacobelli, J. et al. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat Cell Biol 11, 17–26 (2009). https://doi.org/10.1038/ncb1808

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing