Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein Aggregation in vitro and in vivo: A Quantitative Model of the Kinetic Competition between Folding and Aggregation

Abstract

Protein aggregation is frequently observed as a major side-reaction of protein folding. We present quantitative models explaining the formation of aggregates during protein folding in vitro and in vivo on the basis of a kinetic competition between correct folding and aggregation reactions. Both models are in good agreement with experimental data. The model implies that, in vitro, the yield of native protein obtained upon refolding is determined by the rates of the competing first order folding and second order aggregation reactions. Therefore, at high protein concentrations aggregation dominates over folding and leads to the formation of insoluble protein. For in vivo protein synthesis, the model shows that the yield of native protein is only dependent on the rate of folding, on the rate of aggregation and on the rate of protein synthesis. In the cell, several mechanisms, including “folding helpers” seem to have evolved, which influence these processes and thereby prevent unproductive side reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jaenicke, R. 1987. Folding and association of proteins. Prog. Biophys. Mol. Biol. 49: 117–237.

    Article  CAS  PubMed  Google Scholar 

  2. Jaenicke, R. 1991. Protein folding: local structures, domains, subunits and assemblies. Biochemistry 30: 3147–3161.

    Article  CAS  PubMed  Google Scholar 

  3. Udgoankar, J.B. and Baldwin, R.L. 1988. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature 335: 694–699.

    Article  Google Scholar 

  4. Roder, H., Elöve, G.A. and Englander, S.W. 1988. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature 355: 700–704.

    Article  Google Scholar 

  5. Udgoankar, J.B. and Baldwin, R.L. 1990. Early folding intermediate in ribonuclease A. Proc. Natl. Acad. Sci. U.S.A. 87: 8197–8201.

    Article  Google Scholar 

  6. Creighton, T.E. 1978. Experimental studies on protein folding and unfolding. Prog. Biophys. Mol. Biol. 33: 231–297.

    Article  CAS  PubMed  Google Scholar 

  7. Brandts, J.F., Halvorson, H.R. and Brennan, M. 1975. Consideration of the possibility that the slow step in protein denaturation is due to cis-trans isomerism of proline residues. Biochemistry 14: 4953–4963.

    Article  CAS  PubMed  Google Scholar 

  8. Kiefhaber, T., Grunert, H.-P., Hahn, U. and Schmid, F.X. 1990. Replacement of a cis-proline simplifies the mechanism of ribonuclease T1 folding. Biochemistry 29: 6475–6479.

    Article  CAS  PubMed  Google Scholar 

  9. Teschner, W., Rudolph, R. and Garel, J.-R. 1987. Intermediates on the folding pathway of octopine dehydrogenase from Pecten jacobaeus. Biochemistry 26: 2791–2796.

    Article  CAS  Google Scholar 

  10. Jaenicke, R. and Rudolph, R. 1986. Folding proteins. Meth. Enzymol. 131: 218–250.

    Article  CAS  Google Scholar 

  11. Zettlmeißl, G., Rudolph, R. and Jaenicke, R. 1979. Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. Biochemistry 18: 5567–5571.

    Article  PubMed  Google Scholar 

  12. Zetina, C.R. and Goldberg, M.E. 1980. Reversible unfolding of the ß2 subunit of Escherichia coli tryptophane syntethase and its proteolytic fragments. J. Mol. Biol. 137: 401–414.

    Article  CAS  PubMed  Google Scholar 

  13. King, J., Haase, C. and Yu, M.-H. 1987. Temperature-sensitive mutations affecting kinetic steps in protein-folding pathways, p. 109–121. In: Protein Engineering. Oxender, D. L. and Fox, C. F. (Eds.). Alan R. Liss, Inc., New York.

    Google Scholar 

  14. Rudolph, R. 1990. Renaturation of recombinant, disulfide-bonded proteins from “inclusion bodies”, p. 149–171. In: Modern Methods in Protein- and Nucleic Acid Analysis. Tschesche H. (Ed.). Walter de Gruyter, Berlin, New York.

    Google Scholar 

  15. Marston, F.A.O. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240: 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schein, C. 1989. Production of soluble recombinant proteins in bacteria. Bio/Technology 7: 1141–1149.

    CAS  Google Scholar 

  17. Schein, C. 1990. Solubility as a function of protein structure and solvent components. Bio/Technology 8: 308–317.

    CAS  Google Scholar 

  18. Kane, J.F. and Hartley, D.L. 1988. Formation of recombinant protein inclusion bodies in Escherichia coli. Tibtech 6: 95–101.

    Article  CAS  Google Scholar 

  19. Wilkinson, D.L. and Harrison, R.G. 1991. Predicting the solubility of recombinant proteins in Escherichia coli. Bio/Technology 9: 443–338.

    CAS  Google Scholar 

  20. Cheng, T.-S.E. 1983. Increased cell bouyant densities of protein over-producing Escherichia coli cells. Biochem. Biophys. Res. Comm. 111: 104–111.

    Article  CAS  PubMed  Google Scholar 

  21. Gribskov, M. and Burgers, R.R. 1983. Overexpression and purification of the sigma subunit of Escherichia coli RNA polymerase. Gene 26: 109–118.

    Article  CAS  PubMed  Google Scholar 

  22. Mitraki, A. and King, J. 1989. Protein folding intermediates and inclusion body formation. Bio/Technology 7: 690–697.

    CAS  Google Scholar 

  23. Goldberg, M.E. and Zetina, C.R. 1980. Importance of interdomain interactions in the structure, function and stability of the F1 and F2 domains isolated from the β2-subunit of E. coli tryptophan syntethase, p. 469–484. In: Protein Folding. Jaenicke, R. (Ed.). Elsevier/North-Holland, Biomedical Press, Amsterdam, New York.

    Google Scholar 

  24. Goldberg, M.E., Rudolph, R. and Jaenicke, R. 1991. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry 30: 2791–2797.

    Google Scholar 

  25. Moore, J.W. and Pearson, R.G. 1981. Kinetics and Mechanism. J. Wiley and Sons, New York

    Google Scholar 

  26. Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F.X. and Kiefhaber, T. 1991. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30: 1586– 1591.

    Article  CAS  PubMed  Google Scholar 

  27. Kopetzki, E., Schumacher, G. and Buckel, P. 1989. Control of formation of active soluble or inactive insoluble baker's yeast alpha-glucosidase P1 in Escherichia coli by induction and growth temperature. Mol. Gen. Genet. 216: 149–155.

    Article  CAS  PubMed  Google Scholar 

  28. Schein, C.H. and Noteborn, M.H.M. 1988. Formation of soluble recombinant proteins in Escherichia coli is favoured by lower growth temperature. Bio/Technology 6: 291–294.

    CAS  Google Scholar 

  29. Cabilly, S. 1989. Growth at sub-optimal temperatures allows the production of functional, antigen-binding Fab fragments in Escherichia coli. Gene 85: 553–557.

    Article  CAS  PubMed  Google Scholar 

  30. Kim, P.S. and Baldwin, R.L. 1982. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Ann. Rev. Biochem. 51: 459–489.

    Article  CAS  PubMed  Google Scholar 

  31. Kiefhaber, T., Quaas, R., Hahn, U. and Schmid, F.X. 1990. Folding of ribonuclease T1. 1. Existence of multiple unfolded states created by proline isomerisation. Biochemistry 29: 3053–3060.

    Article  CAS  PubMed  Google Scholar 

  32. Lang, K., Schmid, F.X. and Fischer, G. 1987. Catalysis of protein folding by prolyl isomerase. Nature 329: 268–270.

    Article  CAS  PubMed  Google Scholar 

  33. Bergman, L.W. and Kuehl, W.M. 1979. Formation of an intrachain disulfide bond on nascent immunoglobulin light chain. J. Biol. Chem. 254: 8869–8876.

    CAS  PubMed  Google Scholar 

  34. Bulleid, N.J. and Freedman, R.B. 1988. Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature 355: 649–651.

    Article  Google Scholar 

  35. Freedman, R.B., Bulleid, N.J., Hawkins, H.C. and Paver, J.L. 1989. Role of protein disulphide-isomerase in the expression of native proteins. Biochem. Soc. Symp. 55: 167–192.

    CAS  PubMed  Google Scholar 

  36. Goldberger, R.F., Epstein, C.J. and Anfinsen, C.B. 1963. Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J. Biol. Chem. 238: 628–635.

    CAS  PubMed  Google Scholar 

  37. Venitianer, P. and Straub, F.B. 1963. The enzymatic reduction of ribonuclease. Biochim. Biophys. Acta 67: 166–168.

    Article  Google Scholar 

  38. Pelham, H.R.B. 1986. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46: 959–961.

    Article  CAS  PubMed  Google Scholar 

  39. Goloubinoff, P., Christeller, J.T., Gatenby, A.A. and Lorimer, G.H. 1989. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342: 884–889.

    Article  CAS  PubMed  Google Scholar 

  40. Goloubinoff, P., Gatenby, A.A. and Lorimer, G.H. 1989. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase. Nature 337: 44–47.

    Article  CAS  PubMed  Google Scholar 

  41. Fischer, G. and Schmid, F.X. 1990. The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. Biochemistry 29: 2205–2212.

    Article  CAS  PubMed  Google Scholar 

  42. Buchner, J. and Rudolph, R. 1991. Routes to active proteins from transformed microorganisms. Current Opinion in Biotechnology, In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiefhaber, T., Rudolph, R., Kohler, HH. et al. Protein Aggregation in vitro and in vivo: A Quantitative Model of the Kinetic Competition between Folding and Aggregation. Nat Biotechnol 9, 825–829 (1991). https://doi.org/10.1038/nbt0991-825

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0991-825

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing